- \ “ ‘,Ip e -y . 0 8 m
TR R s i I I S

JUITm




( \"gl!'l_‘!“’-',-' (]

LYNX

SEEIREI00000 DASEA0000




CONTENTH
| HETTINCE P THE M

20D —

dTHE REYAOARD

HE P UL 1] i )
MeEhuIY MEM

oy

ATHE DUIMBPUTER AN A CALUULATORNR

AN, Blbiiad i

WAL | < iy ki tnndgent

Lamgal ithine Loy ANTLLLC

BaEhos pumbiers, TANLD, RND, RANDOM

Uhe sluabiale hstalchy

© Co Co 00 W] ] ]

FATANTING TO FROURAM
Lobbgst pninnniboesg
ALY
PAGER T B Tenath
LN
FIIN
PRINT 'T'TAN
Vil
Ll
"WAP
ting variables
INPLI

(0Ga&aa0aond

AAAnN
"R

B LOOPING
GOTO
PAUSE
FOR  NEXT .
END

6 MAKING DECISIONS
IF.. ' THEN
Relational operators ..
Looieal operators
IF ' THEN with strings

Written and illustrated by Sue Jansons IF...'THEN, ELSE
Cover design by Michael Peters & Partners IF. ' THEN with COTO
Typeset mn Qpr Rockwell Light and 7pt OCR-B by Wordsmiths

Printed by Libra Press Litd g { MORE ABOUT STRINGS

Produced by Lang Communications Ltd I 29
Published by Camputers Ltd, 33A Bridge Street, Cambridge CB2 1UW DIM ' SR O S T LTS SR S LA




KEYNand KEYSS GE‘[NandGET$.. R A T 0
LEFTS$, RIGHT$, MIDS .. o L L )|
ASC._,., ........................................................................... . 1
)3 [ RS WS PP i el .
B g e S oo LB 40 A AT 2 P e T e A e R s

8 EDITING

LIST ..
DEL ..
ESCAPE dﬂd CONT

9 STORING and LOADING PROGRAMS

10 MORE VARIABLES

Arrays, DIM ..o s o et b o I e 10
READ, DATA, RESTORE A— o | = N N 1

11 STRUCTURING COMPLEX PROGRAMS

SUbToNNGES: SRR, BEEUBRI o aisms s s s vy ’ 11
PROIGEISITRES . .ot fos it i st fonisonsn o Stssaiassiasis s aamshspanseasi } 165
T R T e e e T e ¥
TRUE and FALSE .ieaimina i) ]

12 FURTHER MATHS

Sy 120,001 1 1B £ 1012 111 810 S ot I e T P s
ROUND and TRAIL «..coovevvivvriveerenn PN . s apsssasnoms ; H0)
IR FRAC BBS SEN sz, ctntie P ey i
ARCSIN, ARCOS, ARCTAN ......cccovvviverirnrions

MOE i
Factorials AR L
Eyponerials aRA NIl UGB b horiminricms easns asssasorsmassssssssssisena

-

10 THE PRINTER
L
LPRIN

14 CGIRAPHICH AND BUILINDY

1l Sl PN e

Wativitbig th i I HARK ancl CFl
il law PRIN'T CHRE VIOU

Viset el cirapihi

LIPHA, CIA PG, LETTER, BIN

10 WHAT I8 MACHINE CODE?

N MACTHINE CODE
£ uncl
PEEK and DPLLEE
POKL and DPOKE
CODE, LOTN, CALL and HL
HIMEM and RESERVE
Binary oparalors
INPT and QOUT
HOUND
I'he momton

APPENDIX |: ERROR MESSAGES
APPENDIX 2: SHORTHAND .......
APPENDIX 3: ASCII CODES

APPENDIX 4: EXTERNAL CONNECTIONS TO THE LYNX
APPENDIX 8 SUMMARY OF LYNX BASIC ........ooiiioiiorinniinimie s ssesssesseesans




Chapter I BETTING UP THE COMPUTER

i il pai i ly e kety at the back
| il I Has a0 aen bl plug al one and). This 1sused o connect the
FUWHIOE has a DN pdug on one end and three jack plugs on the
| ‘
| i 8l
|3 ] | | 1 |
§ HEE TV (FAL vl I Componite video (mono 7 Power input from
BEW,) maonitor + light pen) transformer
saiizin%‘-.‘hh-l:r"" ‘‘‘‘‘ {
~ !
|
f |
b () v, \‘ e
1 / LEE
N
ALk Wi (eEalin 8 (}.IH.‘;I’[[L‘ 6 Parallel expansion bus
T (eg disk drive, second
4 HEUAH perial port (eg processor, memory
Mlern, acountic expansion, parallel
votipler, other interface, games
dornptar, serial joysticks)
Prliter)
I porant nnect the computer up in the right order, so read the following

Hatiuctions right through before you start

Pl ke the video lead. Plug the aenal plug into the aernial socket of the television set,
i e ather and into the socket (marked 1 on the diagram above) on the computer

MEt b youTre planmng o load pre-recorded programs into the computer or to record

Wi own programes, you'll need o connect a cassette recorder with the cassette lead
e cassetie recorcer and it has three jack plugs: a grey one, a thick black one and
LN Black one, Flug the grey jack into the socket marked EAR, the thick black jack
the sockat marked MIC, and the thin black jack into the REMOTE socket. (If you
NAve No remote pockal, it s alnght to leave it hanging free). Then plug the DIN end into
{1y kol marked B on the diagram above

Fhen plug the DIN plug on the power supply into the socket marked 7 on the diagram

ol e i 85 VERY CAREFUL NOT'TO PLUG IT IN UPSIDE DOWN
P o th levigion ancl the wnelle recorder
| Pl e Iy e thes miain
‘ il il 0ty beaping n ["une | Ii 1 111




1t 1s wise to connect to the mains last, and disconnect from the mains first, so I
disconnect the computer follow the above in reverse order,

CASSETTE PLAYER SETTINGS
(Come back to this later!)

To record programs successfully you will need to have your casselte player an th
correct setlings.

If there 1s a tone contral on your player turn it to HIGH.

You will have to experiment to find the best volume setting, because 1t will depend o
your particular machine, When you have played with the Lynx a little, but before you
have a program you want to record, iry typing something like this into the compulon
100 REM THIS IS A TEST L[RETURNJ
110 REM [RETURNI

120 REM [RETURNIJ
130 REM [RETURNI

Set the cassette player to a volume near the middle of its range, then — following the
imstructions in Chapter 9 - try saving, verifying and loading your dummy program. Il
the program is corrupted by the process, try it with a slightly higher volume, then a
slightly lower one, until you are successtful: If the program is not saved at all, again try
with different volumes.

Once you can save and load, you can find the most reliable setting by finding the
highest successful volume, and the lowest, and setting it in the middle

BEFORE YOU BEGIN

The 'computer’ part of a computer system differs slightly from design to design, but
always consists of a microprocessor and two different types of memory: ROM
(read-only memory) and RAM (random access memory).

The microprocessor is the brain’ of the machine, but it cannot process material without
being first told how to do it. [ts instructions are contained in the ROM (which is a
permanent storage area: programs stored there can only be read, not altered o1
erased) and vary from computer to computer. But the end result is similar in all
microcomputers, and forms a computer language.

The RAM is the computer’'s working memory. It is here that programs, such as worcl
processors, Space Invaders, and any programs you write yourself, are stored, This
memory 1s erasable: its contents are destroyed when the computer is switched olf, and
during use; it can be cleared using special commands.

The physical parts of the computer, the chips, the resistors and capacitors, the can
and so on, are called the hardware; programs are called software. So the working
computer consists both of hardware and some permanent software

The computer is linked to the outside world by various devices, which collectivaly o
called peripherals. These can include a keyboard; a screen display of some kind, i
monitor or television set; a cassette player; a disk drive; and a printer.

You need to be able to enter information into the computer's memory, and there ar
several peripherals which enable this. The most immediate is the keyboard, which
allows you to type material directly into the computer.

It is also possible to load stored information into memory, either from cassette or floppy
disk.

The computer needs to be able to communicate its results back to you: these can b

2

lciwn e hiatsly an th GBI i can be made mto a permanent copy
'llmlltupv‘ 18 e | i Lo slorend fon luture reune on cassette or disk
o mae why a comipiter | siaalile, we nesd (o consider the nature of a program. A
POOLIFEIE) L @ e o s s hxad order. The computer can
pest Boan e a enitesed g boest ool sl opsmations i g the prografmmer's task to break
hiwi e i ook abegqom iber i s da [ Alinple taaks roady lor the computer to
1 Il fipilEr can psi o s tanke ol great speed and with great

1R D s 1 et Hiren of repeating an operation, and it never
| Hesnalin Bul th TRITIEEY wiaallily o really the resull of the
] TEIT | TR R T
e pugigsimer nsead i ahales o elo two thinge: lirst o analyse whatever problem
W has st biisell - hai PR Oul e series of simple steps which bring him his
EWal e snaade s solation nto the the language used by the computer. In
pantive, the | lages are clonely linked, because the way the programmer solves
JIE P bE Wil e tiienced by the charagteristics and capabilities of the particular
LT SR IVEI
Meist 4104 PR e & language oalled Bagic, which is easy to learn and to use
bogn i iEas || A Wt andd e mtructure are similar to ordinary English. (In fact

e 1sHEr s BABIC sl 1or Baginners' All-purpose Symbolic Instruction Code), As you
DRSS e sl poere fartbae with il you will find yourself able to solve more and

Filhe TR Jrabied

AR Yo Wl prrob oty et thiat, quite apart from allowing you to use the computer,
Bt et o ot will stimulate you to see things in new ways, and to develop new

u..'ll"\q n\ﬂ Mﬁ
. e Som— |
HOW TO USE THE MANUAL

I YOU ALREADRDY KNOW BASIC

your best strategy will probably be to consult the Summary at the end of the
manual, and chapters 11 (Structuring complex programs), 14 (Graphics) and 16
(Machine code)

I YOLU DON'T KNOW BASIC

thin manual was written lor you! [ts aim is to take you carefully through the features of
Liynx Basi




It begins slowly and simply, but assumes that as you learn more about Basic, vou will
want to work a little faster '
Remember that programming is about solving problems. So approach the manual
bearing in mind the sorts of things you want to be able to do, and look at the thin
learn in that light. With this approach in mind, most chapters include a section of
Examples and Ideas at the end

Before you begin, you might like to experiment with colour, which is, after all. one ol
the Lynx's most exciting features.

The Lynx has eight colours

D-BLACK
1-BLUE
2-RED
3-MAGENTA
4-GREEN
5-CYAN
6-YELLOW
7T-WHITE

When you switch it on, the Lynx is programmed to write in white on a black
background, but you can work in any colours you like

You can change the background colour of the screen — to red, for example - by typin
either

PAPER RED
and pressing the key marked [RETURNI, or

PAPER 2
and pressing [RETURNJ.
And you can change the 'ink’ colour - to black, say - by typing

INK BLACK LRETURNJ
or

INK 0 [RETURNI
Whatever you type now will appear as black print on a red screen — try it [f you warn!
to clear the screen and start again, type

CLS [RETURN]

Remember that if you make ink and paper the same colour, you will not be able (o g

the writing on the screen (in fact, you may think that the computer has broken down!)
but the computer will still recognise and interpret anything you type in

Chapter 2 THE KEYBOARD

I e Dan o ey ol vesry simdan o it of an ordinary typewriter, and the
leetteia ghel panbesid aie avianaed i e ssime order an on o atancdard keyboard, with
A BEyE S A S ek Bt e sare o dnportant additional keys, and some
I Hhe Jis) ke lidaye (i B g
s the seusitEn 18 ey’ Ior opsration 1 displays a prompt symbol » and marks
i peEithon an e scaesn with & Hashing blook, which i called the eursor. This shows
R UEIENERNITE EET WS Typinig will appsar on the screen, As you type text
il the Pl s P bt o Hhe mos s, and the ‘\H‘\llHL-\V".‘L-n‘\'llﬂlllltjly When
Ihe gt 1a full, th fhpnitEr went L o the top agaimn, If the text is part of a
Peibandiadi | is shaise] ) Hhe: coinpniler s msmony
H Yo Btk & keay preesed] cdowi, 0 will repes! atomatically

APFCIAL KEYD

TS Jssl s s a ol the acdcitional keyu i CRETURND, By pressing the [RETURNT key
e e R St En 10 procesn the tax! you have typed in. The computer will know
NlEIREl (e lsal tskes sonee o nol i it doean'l, the appropriate error message will
b el layed o tel (hor a complete st of possible error messages, see
Appsiis 11 yon have typed i o program line, the computer will store it until it is
Bl b s s o 100 hae been given an instruction which is not part of a
pveibarin A calonlation, lor example, it will execute it immediately. The important
P B pene s e it the compuater will not process anything until you tell it to by
JiE il ENETUNND

Pl FaRLi e oy allown you o delete characters by backspacing over them.

Pl Iolt andd right arrow keys move the cursor in the appropriate directions; this will
ol aller e tex

Pl CCONTROL ) kay i slmilar 1o a shilt key: for its uses, see Chapter 8 on Editing, and
Chapter 1 on Craphics

P FERe T Koy (uhor! lor ESCAPE) allows you to stop a program whilst it is running
withou! dimaging the program. This 1s explained more fully in Chapter 8.

Pl fekeaxd kay 18 used by certain specialised programs, but is ignored when the
Liynx s running normally

e # has a special meaning on a computer: it is used instead of x to mean multiply, to
prevent confusion. Two xs means raised to the power of, so 4 squared is written 4*%2,
Uoubodd [0 hesd

The / 15 used o mean divide

A well as meaning subtract, the - can be used to negate numbers or variables.

The . (lull stop) can be used as a decimal point.

The < and » symbols stand for less than' and ‘greater than' respectively. They are used
in gituntions where you want the computer to make decisions, See Chapter 6.

Thete s no rtaymbol on the keyboard: you enter i by typing p1

Thes Lynx has a shorthand [acility to help you type in programs - see Appendix 2.

Commands can be typed in either upper or lower case or a combination of both: the
cotmputer will convert them all to upper case when it lists the program.



MEMORY

You may need to know something about the terms used to describe different quantitie
of memory.

A bit is the smallest unit of memory: it stores one single digit which, because of the way
a computer works, can either be a O or a 1. (Hence its name, which is short for binary
digit)

Most microprocessors work in units of eight bits; eight bits are called a byte

1024 bytes are called a kilobyte, which is abbreviated to K (1024 is a ‘binary thousan
2 raised to the power of 10).

The Lynx has 48K of memory, which is 49152 bytes
MEM

If at any time you want to know how much memory you have left, you can type Mem (ancl
press [RETURND), and the computer will display (roughly) the number of bytes lefl

- e
- .
- s
- e
-
-
- -
-
- -
. -
-m -
- -
- -
- -
-
;| =
-
- .
- -
- -
- -
- .
- -
-
=
g

Chapter 3 THE COMPUTER AS A CALCULATOR

Iy |0 o tediativanes bty mmicle aned outsice programs, and the
HEIRE i) Kl Caloulator. i hina a .‘u'l'l\!
il i i al li4 s E RReHenRs slorodd i ie msimory, A lunction 1s a
feady sl F OB eos fop cineylag oul g onlowlation: Like finding the logarithm
| | il
¥ ]
f i i | T il 1 g Ninch magl be placed in brackets, It can
BE & Wbkl g varlahils | o TR | I A BXPression (an expression 1s any
SRMUEHEE Sl Bl su syinbols whitoh s intended to calculate a value, like 3+4)
PO TAREE A i) (o ko] 0 prooesss 1s called its argument. In this chapter we will
Wik 3 ssinia o) e diiesi ooy unedd hanchions
Biehi e Wby thai onl et et ucton you may ind useful
LiLE
H ¥l wanl TR fRen, ype cLs frETurn g, This also 'homes' the cursor — that is,
| Pl gl Hhar of the screan

Now you know how 1o unclutter the screen, you can try some calculations. You can add
nurmbers together by typing them in like this;

h¥ed

then pressing [RETURNI. The computer will immediately print the answer. Similarly, to
aubtract, type

4=2 [RETURN]
To multiply, type
442 [RETURNI
And to divide, type
4/2 [RETURNI
You can square a number (multiply it by itself) like this:
baw? [RETURNI]
The «» gtands for raised to the power of': the four is the number to be processed, the




two shows that it is to be multiplied together twice. You can cube a number (eq 4*4*4)
by 'raising to the power' of three:
4**%3 [RETURNI]
You can raise any positive number to the power of any number.
For calculating a square root of a number (the number which, when multiplied by itsell
gives the first number) there is a special function, sar
It is used like this:
SQR(16) L[RETURNI
For calculating the cube root (which when multiplied together three times gives |
number) or any higher root, use the this formula;
X**(1/n)
X represents the number you want to calculate the root of, and n represents the type ol
root you want. Again, note the use of brackets. So, if you wanted the fifth root of 100 (s
number which when multiplied by itself five times gives 100), you would type
100%%(1/5) L[RETURNI
You can only find the roots of positive numbers,
The computer has 1 stored in memory with the value of 3.1415927. There is no n
symbol on the keyboard; to use 1t you must type P1.

ANGLES, SINES, COSINES and TANGENTS
The computer can calculate the sine, cosine and the tangent of an angle
The angle must be given in radians. The Lynx can convert an angle in degrees 1o o
In radians, or an angle in radians to one in degrees (there are 2*(PI) radians - and 460
degrees —in a full turn), like this;
DEG (angle in radians)
RAD (angle in degrees)
The sine, cosine and tangent functions can be used like this;
SIN(X)
COS(X)
TANCX)
where X represents the angle in radians.
LOGARITHMS
The computer also calculates logarithms and antilogarithms. To multiply number:
together using logs, find the log of each number, add them together, then lind th
antilog of the answer. To divide using logs, find the log of each number, subtract them
then find the antilog of the answer
LOG(X)
gives the the log of a number,
ANTILOG(X)
gives the antilog.
RANDOM NUMBERS
The Lynx has two functions which generate (pseudo) random numbers: RAND 11l Ko
RAND (X)
will give you a random number between 0 and X-1 (it will give you one of X pousilil
numbers). If you want a number between 1 and X, justadd 1, like this
RAND (X)+1

11T )

TR | & tandoi nimbsr hat N ancd L omaluchng 0, bul not 1, and you will

P blily have ja DA B 1t Hhe padicie you want. rNe 18 most useful in
(il i al

i g e PHEHONS gsiesiale are nol taly random, because they are

pEalEE] oy e saie pinilas, dsing e same initial values, every time the computer
=TT R IR | pi et vaiuidonine 1 ||e“\|‘|‘|

I vl wai e pabde HurnbEis A progrsm, and 1o enaire that they will be

litaiEn Y LIS S P 8 puey You can ineert the command rRanNoom at the

B o e prodestion his will yesset the initial value of the random number

oy

-

{
z\/lwr,lt\?

(
RANDOM NUMBERS. - -

CALCULATING DURING A PROGRAM

i you have a program running on the computer, you can halt it for a while using [es¢]
(Hee Chapter 6) and carry out calculations in calculator mode. The program remains
Intaat, mlored in memory. You can restart the program again, using CONT LRETURNI,

When you use them inside a program, calculations have the same format as they have
oulpicle

THE ORDER OF CALCULATIONS

When making calculations, the computer observes an algebraic hierarchy: it has been
programmed to perform calculations in strict order. This is achieved by allocating a
priotity < a number between 0 and 22 - to each operation. The computer executes
them in numerical order, lighest first. Given a calculation including several different
Operations, 1 will

flrst evaluate functions,

then it will caleulate powers (like squares or cubes);
next it will give o negative value to any numbers you have marked with a minus sign

i)




— then it will carry out multiplication and division: they have the same priority and so
are executed in order from left to right;

— finally, it will carry out addition and subtraction, which also have the same priority
and are also executed from left to right.

It is important for you to be familiar with this order of priorities because you must
construct calculations accordingly, otherwise the computer may not make the
calculation you want, but a completely different one. For example,
5+46%10
will be calculated like this:
6*10=60
54+60=65
when you might have expected the answer to be 110,0r
5+6=11
LI*10=110
You can alter the priority of an operation by placing it in brackets: this will give 1
priority over any other operation. So,
(5+6)*10
would be calculated
5+6=11
11*10=110
Being able to change priorities in this way can be very useful. Otherwise calculation:
like
(atb)*(c+d+e)
would involve complex arrangements of operations:
a*c+a*d+a*e+b*c+b*d+b*e

The computer has several other important functions which are more specialised than
those discussed in this section, including natural logs, and factorials. These will b
discussed in Chapter 12.

10

Chapter 4: 5TARTING TO PROGRAM

LINE NTIMBE

A PIOUTEH IE 8 88 UEncs of istroeicas, I Rasie, Hhis secguencs s determined by]me

mibera ach prociaim Hine Deadin ha nmber, and 1 entered into the computer
hen you i IWETURNT T TP arvanges and executes the lines in numerical
e

1005 sl s sha e e withs mily gl number, say 100, and to increase each
sbss sl pubier by 0 You ey nesd (o add more lines later, and this should

ENSIEE ha] Yo Bave anough spmces, Even experionced programmers do this!

I'he Hae mtnbe & dlo il have o have eagalar teanes between them, and the lines
100 0l have o be bypsd e e compuler in numerical order

PHE soripitEn hap two mocten imedinte mode and program mode. A line number
ELE the campiter thal the instuction following it is part of a program. Try typing this

ERINT LYNR
PrEss CrE Timh st Thes computer obeys the command immediately. Now try this:
1 PRINY LYNKX

AL prsas EpETurnd This lime the computer does not obey immediately: instead it
torsa the e an part ol 8 program

FOLLInaY ke 1o add another line to your program:
w00 0 LRETURN]

e sompiter must be told to execute the program, Type:
WUN [RETURND

e compmter will obey immediately, and fill the screen full of LTYNX's. To stop the
ProgEan running, press the Cescl key.

IEyou wanted (o start it running again, you could type either
CONT [RETURNI
whieh would start it up from the point it stopped at, or
RUN [RETURNT
which would restart it from the beginning,
II'you want to erase the program from the computer's memory, type NEW LRETURNT.
We will explore PRINT, 60TO, RUN, LESC], CONT, and NEw more fully later.

AUTO
You can ask the computer to put the line numbers in for you, by typing AUT0 LRETURNI.
You can use aUTo either before you begin typing in a program or during typing; then,
when you press [RETURN], the computer will write in the number of the following line
lor you

You can tell the computer which number to begin from, and the rate of increase you
want, like this

AUTO 1000,100 [RETURN]

In this case numbering would begin with line 1000 and each subsequent number
would increase by 100, Otherwise, the computer automatically begins numbering at




100 and increases by 10. You can just specify the starting number,

AUTO 1000 LRETURNI
and the computer will increase line numbers by 10.

When you wart to Stop AUTO, press [RETURNI.

Certain mistakes — mis-spelling a command, for example — will make a line
umntelhgible to the computer, and it will respond by displaying an error messace. |1
you make an error whilst using auto, the computer will give you the error messac
then print the same line number again, allowing you to retype the line
When you overtype a line — that is, type in a line using a line number which already
exists, perhaps as the remains of an old program - the new line replaces the old i yoti
are using AUT0 and have asked for numbers which already exist, the computer will
warn you by printing a ! after the number as it prints it up. If you do not want (o
overtype the ling, you can keep the earlier version by pressing CRETURNI. You can then
reset AUTO, specifying different numbers
You can use the computer in calculator mode whilst in aAuT0. For example, if the
computer gives you

1000
and you type 4+4 [RETURN]

the computer will display

8
1000

and allow you to type in line 1000,

Certain Basic commands (like the 6070 in our Liynx program) use line numbers |
redirect the flow of the program against numerical order. This is another importan!
function of line numbers.

A special feature of Liynx Basic is that it allows you to have line numbers which are not
whole numbers, like

10.5
or even

10.23656
which means that, should you run out of space between whole numbers but still need
to insert more lines, you can do so without having to attempt to renumber yout
program. It also means that you will not have to resort to bad programming practic
like using 6070 to direct the computer to bits of program you have had 1o wrils
elsewhere.

MAXIMUM LINE LENGTH
On this computer there is a maximum of 240 characters allowed on any prograim Ji

RUN

As we saw earlier, when you have typed in your program, it is stored until you tell thi
computer to execute it. You do this by typing RUN [RETURN]

You can tell the computer to begin running from a specific point in the program by
adding a line number to the command. For example:

RUN 100 [RETURNI

12

it UE i hi Hiviilsr will 1e anv lin U0 A tmber lower than 100, and start
RESAINA 10 e LN L HiY 1sler Pt t of (he paroaram sends it back to the earlier

Hnes L =Vel I will e thei TR ol liave been iImpaired by the run
Ri):) i bl

AN TR EET 15 i PSS Tsnory unhil you erase 1t by using NEw

fapisg Pl [l Hipites aft Until then, it can run again and

L

Wheh I jue 3 Jidian i PEET s 10 kesp track of where 1t is 1t has to store

e wahiea ol vaiiahilses aml L THis s erriation s all lelt behind in the computer's

REREEERREY WS LS e s Rndahesd sunning, As well as telling the computer to

EIG IR LERIE P A, RUN dEsin all Thie debiris away

MAXIMUM LUINE LENGTH-

Maia about PRINT

A

Wi linve seen, the print command tells the computer to display information on the
s, anct gan be used inside or outside a program

PN infarmation can be either a string, or a number or a variable. Let's look at strings
Tl _

dtEInG Is just the name for any collection of characters, It could be a name, or a unit,
ke inchey’, or an instruction like

Would you like to play the game again?
On the Lynx strings are normally limited to 16 characters, including any spaces. But
you can use strings up to 127 characters long by dimensioning them — which is
oxplained in Chapter 7
I you wanl to print a string, the material must be placed in inverted commas:

10 PRINT"T am a LYNX." [RETURNI
Il you want to run this, type RUN CRETURNT.
I'he computer does not read anything contained in the inverted commas. It can be in
Enghsh, in German, or gibberish: the computer will simply obey its instructions and
print it on the screen
A variable 15 a symbol which represents a numerical value, When you ask the
computer to print a variable it gives you its present value (for a full explanation of
vatiables see later in this chapter)




If you want to print a number or a variable, you do not use inverted commas

10 LET A=0 [RETURNI

20 PRINT A LRETURNI]

RUN LRETURN].
If you had put inverted commas around the a by mistake, the computer would havi
printed a letter A rather than the value of variable A.

You can combine the two types of print statement on one line. Retype line 20 as
20 PRINT "The answer to the problem is ";A;
" inches."

and RUN [RETURN] the program again.

You may have noticed the semi-colons which separate the two types of print statomen!
in the line above. These tell the computer how much space to leave before printing ti
material that follows.

A semi-colon tells it to leave no space, so be careful to insert any spaces you may neal
into the string in the inverted commas, like the space after is.

The computer's screen is divided (invisibly to the naked eye!) into 40 columns - you
can print 40 characters across the screen. These columns are divided into 5 larger
columns, each 8 characters wide. A comma tells the computer to move (tab) acros |
the beginning of the next column before printing.

If you combine the two types of print statement you need to place one or other of e
symbols, called delimiters, betweern them. If you forget them, the computer will give
yOu an error message

If there is no delimiter at the end of a print statement, then any later printing will start al
the beginning of the next line; if you add a delimiter, later printing will start either
immediately after the previous material, or tabbed across from it.

This short program should show you the difference.

10 PRINT "This","is","an","example”,"of" ,"commas" [RETURNI
20 '‘PRINT "This Mi'"js "+Man ":Mexample ";“of ";
"semi-colons" [RETURNI

30 PRINT "This should join on to'"; L[RETURN]

40 PRINT "™ this." L[RETURN]

RUN LRETURNI
When you want to erase the program, remember NEW [RETURNI.
PRINT TAB
PRINT TAB allows you to select any one of the 40 columns and tell the computer (o badin
printing from there, like this:
PRINT TAB column number; material to be printed

or
PRINT material; TAB 20; material

Note that you must insert a semi-colon between the TAB command and the material (o
be printed.

Try this:

10 PRINT TAB 15;"1 am a LYNX" L[RETURNI
20 GOTO 10 [RETURNI

RUN CRETURNI
Remember that although the program forms a continuous loop you can stop if al uny
time using LESC].

TAB is useful whenever you want to position text accurately on the screen

14

VARIABLEN

EYRIE NEW ERETURNT LD g the computed s meimory, then try typing in the following
| Bl JEE

1 LEY asl (RPETURNT

0 LEY azat!l [RETUAND

il PRINT a IRETURN)

BB PAUSD 0N R TIIRN T
U #4otn I INETURNT

BUN [ RETIEN)

FhE & 1 s progiaim above oo varlable, o label relerring to a particular location in
Sty The lseimation slored i this lboation varles as the program runs: the first
IHE S the prodrain telie the computer 1o store o value of 0 10 it. In the next line it is told
I pEas Hhe vl ol a by adcing | ot so, the the value of a becomes 1, then 2, and
S OH Lins sl e amputer 1o display the prasent value of a, followed by a space,

LH ThE 80kl The 1aR e el i o repeat ”Ii'\NIII""'Ilfli't'!'::;xi(:hlll'l, and it will do so
aaiatt shH adali vt m I by CENC)

FRE RPNt i o motice o that although the numerical value of a changes as the
PREOLIRE R s, Thes Bamber 1 ispresents always plays the same part in the program; it
Y BE sanieal (o think ol o variable as o symbol representing a number which

dlishaEs 1 valis Dodause i s processed as the program runs.

A VapEDE sl De epreseniecd by o single character, and your choice of characters is
fEstE s o the lsttere of the alphabet, both upper and lower case, a total of 52

HARIES YOl conit ee Dath A ancd a in the same program: the computer will recognise
Pt by o chilTesy eenit

AR Wins 0 nake the name you choose as meaningful as possible: for example, you
SO bl o vaciable representing the height of a rocket, H.

Lt
LT = allown you to asgign o value to a variable. The value can either be a number or
all BEpinEbion, 50 i the program above we have
LET a=l
}il‘
LET amatd

e s pressions can be very complex:
LET anEXP(=x#%2/2)/SQR(2%P1)

fou can assign values to more than one variable in a single LET command:
LET Am§, b=12, €=25.......

The varinbles must be separated by commas.

You may have noticed that when it is used with LET, an = sign does not mean 'equals’
bul ‘becomes equal to'
HSWAP
BWAP allows you lo exchange the values of two variables. Suppose you have two
varinbles a and 2 and want to swap their values; swaAP has this format:
SWAP a,z

SWAP 18 eapocially useful for sorting values in order of size. For example, if you want to
ot paveral numbers into numerical order, you can write a program which compares
the mize of vach pair of numbers in turn, and swaps them if the first is bigger than the
woond (see Decision making, Chapter 6)

18




You cannot swap string variables.
STRING VARIABLES

As mentioned earlier, a 'string’ is a collection of characters. A string variable is similan
to a numerical variable: it is a label referring to a location in memory in which a string
rather than a numerical value, is stored. You can use up to 26 string variables in a
program. They must be labelled 48, B$, ¢$, and so on, up to z$. (8 is the standard
symbol for representing strings). Ordinarily, the strings represented by string
variables can contain up to 16 characters, including any spaces. (In Chapter 7, we wil
explore strings in more detail).

—

(]

STRING VARIABLES |.

You can assign a value' to a string variable using LET; the value mus! be placed in
inverted commas. For example:

LET AS="LYNX"
You can use string variables in PRINT and INPUT statements. Try typing in the [ollowing
program

10 INPUT "What is your name";A$ [RETURN]

20 PRINT "Hello ";A$ [RETURNI

RUN CRETURNIJ
We will look at INPUT in some detail a little later
You can probably see that by using string variables carefully, you can give youl
programs a professional look. You can even give the computer a character, ancl imal
it seem to show an interest in the person using it (see the example prograrm at the epd
of this chapter)
You can ask the computer to display the value of any variable at any time by typing in
the variable name, a, b, ¢ or whatever, and pressing [RETURN]
The computer stores the values of variables separately from the rest of the progran, i
a specially constructed table. Every time a variable is used, the computer conuulin th
table. Any values which are changed as a line is executed are updated

16

INFLII

PNy el Iy RPN 100 et o resnpoine typed in through the keyboard, For
il it the hill Wl b odiming, 1 I hinve | 1ype i thedr s
10 INPFUY A TRETIHAN)
0 rniN Yiu 4 b & b A INFTIRN]
WUN §A y
I PPAED FEactn ENRUT, bt wanle for i response, printing @ 1 to indicate that it is
i Livi ) VEMEHY Ui be sither o number or an expression, so if you
1 1 | TIRA] | | b HEL Ty e THHE- [H6Z
HEC IR N has bssn yped in anct RETURN has been pressed, the computer
b Be il a FELRRE 10 T st uctions an the ollowing line. In this case it stores it as
Vgl | A e paciedm th 1T I A Of 1he sCreen
FRELY &) 41| PO it il smm--uunr||'-:.w-|1~e-m-wt|1typmgma
1E3f 4 LS RO, You e inatude o steing in the input command, which will be
BERUEN Gy the gurean belores i part of the prompt, The string's length is limited
biv LhE ikas i line Wl ol 240 charvact oy
HRE piogram a oAb o tesresc) that line 10 reads
T TR TEY yolr age" A [RETURN]
HEH HRtERE O i ather absoure guestion mark, the computer will indieate that it
| | | | W
Whet T
Tl ‘ FIRINT, you nead to use a comma or a semi-colon to set the amount of
i ISH DBatwaan the two components of the line, the string and the variable

CRH AEEANGE an INPOT o that the computer expects more than one response. For

10 TNPUT A B
IR sxample, when it comes 1o line 10, the computer will respond with a ? prompt
FOUE Tenponnes st be separaled by a comma, otherwise the computer will not know
(hat they are three separate values and will treat them as one high value. In this
HiRtan, Being abile to insert an instruction into the input prompt is very useful. For

W

I INPUT "What are the three values A,B,C";A,B,C,

will ke things much easier for the user




Remember that INPUT automatically adds a question mark to whatever you include in
the string, so you should phrase it accordingly.

It is difficult to stop a program with fesc] whilst the computer is waiting for an input
this can be useful, because it means that an inexperienced user is unlikely to stop the
program accidentally. If you want to use {£s¢] during an input, you must first type in an
acceptable answer, then hold down the esc key, then press [RETURN].

One interesting aspect of both PRINT and INPUT is that, with careful wording, you can
use them to give the computer a personality.

IDEAS and EXAMPLES

1. This program is a very simple example of giving the computer a personality using
PRINT, INPUT and string variables.

10 INPUT "Hello, what is your name";AS$ [RETURNI

20 PRINT AS$; [RETURNI]

20 INPUT ", how old are you";a [RETURNI

30 PRINT "Where do you live, "; A$; [RETURNJ

40 INPUT B$ [RETURNI

50 PRINT "And have you Llived there ";a;" years"; [RETURN]

60 INPUT C$ [RETURNI

70 PRINT "I've never been to ";B$;". What's it Like there"; [RETURNI]
80 INPUT D$ [RETURNI

90 PRINT "What, is it really ";D$;"?" [RETURN]

RUN [RETURNI

You might like to try writing a similar program, using your knowledge of the person
you intend to show it to, to make the computer's remarks seem appropriate.

Programming computers to understand - or seem to understand — natural language: is a
branch of Artificial Intelligence. If this interests you, you might like to read
‘Experiments in Artificial Intelligence for Small Computers' by John Krutch (publishecl
by Howard W. Sams & Co, Inc).

As you explore Basic more fully, you will be able to write more sophisticated
examples.

2. Here is very simple accounting program!
(You can change 'pounds' to ‘pence' if you are poor).

100 INPUT "How much money (in pounds) do you receive per week";C
[RETURN]

110 INPUT "How much (in pounds) do you spend per week";D [RETURNI
120 CLS LRETURNI

130 PRINT "MONEY RECEIVED";TAB 18;"MONEY SPENT"; TAB 29;"BALANCE"
CRETURNI

140 PRINT "IN POUNDS";TAB 18;"IN POUNDS";TAB 29;"IN POUNDS" CRETURN]
150 PRINT [RETURNI

160 PRINT TAB 15;"PER WEEK:" [RETURNI

170 PAUSE 2500 [RETURNI]

180 PRINT LRETURNJ

190 PRINT C;TAB 18;D;TAB 29; C-D L[RETURNI

200 PRINT [RETURN]

210 PRINT "At this rate, the figures per year will be:" [RETURNI]
220 PAUSE 2500 LRETURNJ

230 PRINT [RETURNI

240 PRINT C*52;TAB 18;D*52;TAB 29;(C-D)*52 [RETURNI]

RUN [RETURNI
The pausk in line 170 and in line 220 is intended to give the impression that the
computer is making some weighty calculation.

18

Chapter ;. LOOPING

GOTO

A BNAW L L HERNSE 4, G010 slters the pattern of program execution, instead of
VL TR Progiat vt e b e ionl order, the computer, when il reads

BOYH LineE numked

PioveEs e e spsciisd, ignoring eyeryihing betweean. The command is sometimes
e an vnooniciiomsl mp beonise the computer doess not have to make a decision
bhishsie il vl Chn O agatens 6w U aee the computer considering specified
TR ELETT i clesaniling whisthen ar not to jurmp)

BiTH I8 Llssil | Vil 'Hoquﬁ I o prograim

—[00 G-6TO 10

TOU can make a program run again and again, without having to enter RUN every time,

by Including a 6o1o command at the end which sends the computer back to the
Bisginning again

What o program forms a continuous loop it can be stopped by pressing the [£s¢] key.

Lo goro carefully. It is easy to fall into the habit of writing programs which have
operations arranged haphazardly and linked together by 6070, but this is considered
bad programming style, If your program is clearly organised it will be easy to modify
and improve

Using everything we have seen so far 1t is already possible to write useful programs:
here, for example, 1s a short program to calculate the hypotenuse of a triangle:

10 INPUT "Lengths of sides A,B,in centimetres ";
A,B LRETURN]

20 LET C= SQR(A*x*2+B+%2) [RETURNJ
30 PRINT "The length of side € is ";C;"centimetres
'O LRETURND

40 GOTO 10 [RETURNI
RUN [RETURNI

This program will run again and again because the 6070 in line 40 sends the computer
back 1o the beginning of the program, Each time it runs, the result will be printed

19




below the previous one. If you want to clear the screen between each calculation you
can add
5 CLS LRETURNI
and
35 PAUSE 10000 L[RETURNI]
and change line 40 to

40 GOTO 5 [RETURN]

PAUSE

You may find that in a program like the one above, which displays information ori the
screen and then reruns itself, the information disappears from the screen so quickly
that you scarcely have time to read it. pauSE allows you to specify how long the
information is to be displayed. It has this format:

PAUSE number
When it reads pauSE the computer starts up an internal timing loop, and runs it for th
number of times specified in the command. The loop lasts for about one ten thousandth
ofa second, so

PAUSE 10000
will give you a pause of roughly one second. It is best to experiment with numben
find the length of pause you need in a particular situation.

FOR
PRINTING

FOR.-NEXT

The FOR...NEXT loop

The computer is very good at repeating operations, and as we have seen with 6010
programs can be made to loop. There is another Basic structure, the FOR. . .NEXT ltio)
which allows you, as part of a bigger program, to repeat an operation for a specifi
number of imes. It looks like this:

FOR variable=initial value TO final value

operation

NEXT variable

20

lwlmlllllllllllllIIITIIlIIII
INIB'E'RDIB'E'RF'E'ER'E'E'E'E'E'EEEE'R'EEIm

e Best Likies teallen 1y P 1o gt b i tnter in the [orm of a variable with
P ises irnhtee] ainid Dl verlige e LG witli thie variable at it l[llllnll',‘\\llil“ the

LI e g i Ll T prsialing

ilel variabde, e euesouten e oot alion acain, anc

ihihieE i T | il 1T T

on, untl the counter

Hnplet then moves on o the rest of the

FOR  NEXT
,..m‘ ht '-n(jgw. ‘o

> FOR. = Mtasured.
MM.yr‘
0 twnes

(l AP":M'WM

1

—NEXT
[

6 nea this more clearly, try typing in and running this program

10 TOR J=0 to 10 LRETURNI
20 PRINT J;"™ "; [RETURNI
50 NEXT J [RETURN]

The computer will print out
D123 45678910
ug the counter variable, J, increases each time the loop is executed

You can specify the rate of increase, the increment’, using STEP. Try changing line 10
in the program above to

10 FOR J=0 TO 10 STEP 2 LRETURNJ
T'his time the compulter should print
0246810
You can also make the loop decrease by stepping by a minus number, like this
10 FOR J=10 TO 0 STEP-1 [RETURNI
which will result in
109876543210

e b ieaches Nex T, it adds one 1o the value of the

al




If you do not specify the stepping rate, the counter variable automatically increases by
one.
If you want to have another look at your program, type

LIST CRETURNI
You can see that the lines contained in the FoR...NEXT loop are printed indented: this i
to make the program's structure clearer
To run the program again, simply type

RUN LRETURNI]
Here's an example of a FOR. . .NEXT loop running from 1 to 10; the Lynx patent dog walk
calculator!

10 PRINT “Distance"; TAB 20; "Time" L[RETURNJ

20 FOR D=1 TO 10 [RETURNI

30 LET M=D*15 [RETURNI

40 PRINT D;" miles"; TAB 20;M;" minutes"[RETURNJ
50 NEXT D L[RETURNI

60 END [RETURNI]

RUN [RETURNI
FOR...NEXT loops can be nested - that is, one FoR. . .NEXT loop can run inside another

& NESTED F'OKNExrl«ﬂ'KF

—~FOR s
FOR:

cr
NEXT€

—NEXT

Look carefully at this program:

10 REM nested FOR...NEXT loops [RETURNJ

20 FOR J=0 TO 10 LRETURNI

30  FOR I=0 TO 10 [RETURNI

40 PRINT "#"; [RETURN]

50 NEXT I [RETURNI]

60  PRINT LRETURNI

70 NEXT J LRETURNJ

RUN LRETURNI
Lines 20 and 70 setup a FOR...NEXT loop which counts from 0 to 10, so any operation
contained in the loop will be repeated 11 times. The operation consists of anothe:
FOR...NEXT loop, lines 30-50, and a print statement, line 80. The 'Inner' FoR...NEXT
counts from 0 to 10, printing a * each time. The semi-colen following the « tells the

computer to continue printing on the same line. At the end of the inner For. . .NEXT o0

22

Ml Sy PRI statsment which, because it doss not end with a semi-colon,
Fifdiicis e i I il Hhe Heal L, reacy [on the next run
N I J
| i ] ] 1
Mié&n 1) Pibbiaih e al P intead oy s line will Increase as the counter ‘v’ill’ldble‘J.Df
I ! FUE NER) |
L NI
§ LS WL Bt g when the computer has used up all its instructions. But you
i &l W il By s g an kN statement. This 1s good programming style:
NMUENRLT et i Hpauter will print
i) ]
B EPE I T cothiplen programs - gee Chapter 6, Making decisions.

FEAN and LEAMPLEN
HISEE 12 8 piiatn which priats oul the three times table, but you can easily change it
bl D el HEd Ll e

10 FBR Jd=0 T0 IRETURN]

110 LET NeJ&y [(RETURNI

0l BRINT J KA "IN [RETURN]
140 NERY 0 INETUNRN)

23




Chapter 6: MAKING DECISIONS

IF..THEN

With 1F...THEN you can ask the computer to make decisions.

1F Is followed by an expression defining a particular condition, or set of conditions, ancl
instructs the computer to test whether the condition is fulfilled. If it is, the computer will
execute the rest of the line, consisting of THEN followed by an instruction. If the
condition is not fulfilled, the computer ignores the rest of the line and passes 1o the nex!
line.

CONDITIONS

So far we have talked about conditions being ‘fulfilled’, or not fulfilled’, but these ar
imprecise terms, allowing shades of meaning. The computer can only decide balwen
two possibilities; the condition can be either true or false: there can be no shados ol
meaning. To program the computer to make complex decisions you first necd (o brel
the decision down into a series of true- or false-type conditions.

Let's see how this works in an example, using the simplest of conditions - 'equality
represented by an = sign. In this context, the = strictly means ‘equal to' (not 'becion
equal to', as it did with LET — see Chapter 4).

10 LET A=INT(RND*10)+1 L[RETURN]

20 PRINT "I'm choosing a number...." [RETURN]

30 INPUT "What s my number, between 1 and 10";B [RETURNI]
30 IF A=B THEN PRINT "You were right!" L[RETURN]

RUN [RETURNI]
The decision is made in line 30: if A equals B, the computer responds by printing You
were right!; if they are not equal, it does nothing.
The truth or falsehood of a condition is called its logical state. (‘Logical’, in this contexl
simply means that the state is confined to one of two possibilities, true or falso)
Depending upon its logical state, the computer assigns to the condition a logical value

24

of esither Oor 1000 s e, | s irus, So, i ithe contex! of an 1F. .. THEN command, i

[l epgore i lollowing the 1r has a valua al 0. the commputen icmores the THEN. . . if 1t
1yam i vl { 1. thy T ey e moyten L THEN
The OPERATORN
1" nelinom alwinye imvol ot vislues inone way or another, The symbols
hesly pespreiesiit e ciffarant by il poinpar isons are ¢alled operators, [lltfl]’llllgs
MTIGARETT o] opwranciy
Fitvin )i’ o onily o siple of o group ol operators called relational operators. These
e
| NI
irisalin Hin

= '} HIE TRl EIRL

ealal Hian ol HEIR
Fal &ua)
Mieas pipstalon are all amac with 1 THEN Lo form conditions
I Pebions can be gembined, then tested and assigned a logical value of O or 1,
P e s logi ||||||r|||u||||.'|
ANH
N
N

Ptk gt b Tollowed by o space), These operators ask the computer to combine

it by chilfesrent way

Lt ok ol sach one o, Suppose we take two conditions: they could be anything,
Filll Wt IR

A J

neainn
AND

IF Ad=% AND DB>100 THEN PRINT "#"
s 1 ! ol this will be assigned a value of 1 (TRUE) only if both the A<=5 and
We 00 e rue, then the computer will print a *. Otherwise, if one or other, or both are
e, the whole construction is assigned a value of 0 (FALSE) and nothing is printed.
(8] 1]

If A<*% OR B>100 THEN PRINT '"#"
Pore the £f ., . will be given a value of 1 (TRUE) if either A<=5 or 8>100 is true, or if both
dre (rue, but o value of 0 (FALSE) if both are false.
NOT
NOT 18 ugod less often than anp and or: it returns a value of 1 (TRUE) if the condition it
(ente 1 FALSE, and a value of 0 (FALSE) if the condition is TRUE, NOT is at 1ts most
ugeful with strings, or in long, complicated combinations of conditions.
I addinon, the computer can recognise a sort of ‘implied’ operator, and assign a
[ocicnl value 1o a variable depending on whether or not its numerical value is zero: it 1s
given a value of 0 if it is zero, | if not. So

IF A THEN PRINT “#"
will result in o star being printed if A is not 0.

I NOT A THEN PRINT "w"
Wil parint & star 1A 150

25



THE HIERARCHY OF OPERATIONS

When performing these comparisons, the computer follows a strict order of operation:
any arithmetical operations are carried out first;

then the relational operators, = <, >, <=, »>=, <> are processed, in order from left to right
then NoT;

then AND;

and finally, oRr.

You can alter this order by inserting brackets: anv operation in brackets will be
processed first.
The OPERANDS
Operators can be used to compare numbers, variables, functions, and in some case
strings. Let's look at some examples:
IF A=B THEN PRINT "*"
A star will be printed only if A has the same value as 8.
IF A=SIN(B) THEN PRINT "&"
A star will be printed only if A has the same value as SIN(B).

IF...THEN with STRINGS

Strings and string expressions can be compared only with the = operator. For
example:

IF A$="LYNX" THEN PRINT "%"

1F A$=BS THEN PRINT "x"

IF AS="LYNX" + B$ THEN PRINT "#"

IF LEFTS(A$,3)= C$ + CHR$ (84) THEN PRINT "
You can also construct the equivalent of <>, using NoT like this:

IF NOT A$=B$ THEN PRINT "*"

Almost any command can be made conditional using IF...THEN. If it follows THEN, &
command has the same format as it does normally.

IF..THEN...ELSE

Unless the THEN part of an IF...THEN directs it elsewhere, the computer will alway
execute the line that follows, whether it executed the THEN... or not,

If you want to create a branch in your program, and have the computer execute one of
two alternative possibilities, you can use IF...THEN...ELSE
It 1s used like this:

IF condition THEN operation

ELSE alternative operation
If the condition is true, the computer executes the operation following THEN, ther gk
over the next line when it reads eLSE. If it has not executed the THEN. . ., it execulos i
ELSE. Look at this program:

.10 INPUT "What is your name"; A$

20 IF A$="LYNX" THEN PRINT "That's my name too!"
30 ELSE PRINT "That's a funny name!"

The decision is made in line 20: if your response is LYNX, the computer prints That 's my
name too!, but not That'sa funny name!. Otherwise, it prints That's a funny name!

26

NGt that ths allernativen onn orly be sinole commeancd

(I, By iimtakess, you type (ooab e Lee lne withoul a roR, , . NEXT, the computer will ignore
HOB Wil ol clisplay ah el ror e Wwjm)

W THEN with GO0

s 1HEN pErt on tha e it ol your decision i longer than a single

Vbbbl TSR THEN Wil 010 1o cirect th computer o operations in

Ihet pail CURE o

e w GiOTs
I rewadil , TRUE 9 THEN Goo
IJ]l.'-i

|
NEXT LIt
Y Y ¥
', :‘\,M;m.h?l \ "

LT

I-\v\

“ -leﬂ\‘j W ))

[ LETTLLETS

I,}

Erb

Frogeams using 1. .. THEN with GoTo are usually very long, but here is a rather artificial
hotl example. Al the end of the section you will fi..d a program which simulates
[OBpiEIg) @ Coin, using 1F. . . THEN ELSE. Here is how you might write 1t if 1F. .. THEN ELSE

(el not exisl

5 PAUSE 10000 L[RETURNI

10 PRINT “I'm tossing the coin..."; [RETURNI
20 FOR J=1 T0 3 [RETURNI

10 PAUSE 5000 [RETURNI]

40 PRINT “."; [RETURN]

S50 NEXT J LRETURN]

60 PRINT [RETURN]

f0 LF RND<O.5 THEN GOTO 100 L[RETURNI
BO PRINT "and it's TAILS!" L[RETURNI]
00 GOTO 5 [RETURN]

100 PRINT "and its HEADS!" [RETURNI
110 GOTO 5 [RETURNI

RUN [RETURNI

I'he firat possible operation 1s contained in line 100, the second n line 80. If it prints
TALLS, the computar 1s prevented from printing HEADS as well by the 6070 5 in line 90.

e two allernatives could, of course, be much longer than one line.

27




On the Lynx, the line number following 6070 can be represented by a variable or an
expression; so you can have

GOTO A
GOTO 100+INT(RND*6)
and soon

This means that you can also use 6070 to make very complex branches in your
programs — provided you are very careful!

100 DIM AS(30) L[RETURNI

110 INPUT "Hello, what's your name";A$ [RETURN]
120 GOTO 120+RANDC4)+1 L[RETURNI

121 PRINT "That's a nice name, ";A$ [RETURN]

122 PRINT "That's a funny name-";AS$;"!" [RETURNI]
123 PRINT "“Pleased to meet you, ";AS [RETURNJ]

124 PRINT "Hello ";A$;", my name is Lynx" [RETURN]

RUN L[RETURNI

IDEAS and EXAMPLES
Here is a program which simulates tossing a coin, using IF...THEN ELSE.

10 PRINT "I'm tossing the coin..."; [RETURN]
15 FOR J=1 TO0 3 [RETURNI]

20 PAUSE 5000 LRETURNI

25 PRINT "."; [RETURNI

30 NEXT J [RETURN]

40 PRINT L[RETURNI]

50 PRINT "and it's "; [RETURN]

60 IF RND< 0.5 THEN PRINT “TAILS!'" [RETURNI]
70 ELSE PRINT "HEADS!" [RETURNI]

80 PAUSE 10000 LRETURNI

90 GOTO 10 L[RETURNI

RUN L[RETURNI

28

Chapter 7: MORE ABOUT STRINGS

Wae have alisaddy used olrings with PRINT and INeuT, and stning vanables like a$ and Bs.
Lt Lhis sésirion wi I sxplore other ways ol using strings
W havies sesen (hat Youl oan assicn a value o a string variable using LET,

LET AN LYNX

il that, oecinanly, fputer will allow you o lype tina string of up to 16
haraatesn In laol W oan tell the computer exactly how long you want Thes'[l‘]_ngto
| Cobtrvsambenn 10, v o e of 127 characters, usinag oim
LM
BIW ARIA)
e the st (o acospt e string up to B characters long. If you type in more than 6
bt hesre, i Pptesr will truneate your string - it will ignore the excess

hata st

ey Ly g i this prodgram

i BIM ANIR) [(RETURNI

O INFUT "AS"JAN [RETURN)
M0 FWINT AN [RETURND

4 GOTO 20 (RETURNID

HUN [(RETUNRNIT
PEy siterinig steincgs of differant lenaths and see what the computer does to them.
Thes 6010 0 line 40 gends the computer back to line 20, not line 10, because the string
dows ot e 1o be redimensionecd. 1 it was re-dimensioned, the computer would

Wee siother chunk of mamory space for storing it, without erasing the earlier area, and
evaitually run ot of memory

i
Fach ol the characters that can be displayed on the screen has a special code number,
which allows the computer to identify it. The Lynx uses a standard set of codes, called
ALCH (Amertican Standard Code for Information Interchange). You can find a list of the
ADC eodes in Appendix 3
Uming

CHRS (code number)
you can tell the computer to convert a code number into the character it represents.
The code number may be represented by an expression, like

CHRECA)
(8]

CHRECAXI0)
CHRS can be used in PRINT statements, or in string expressions — see later in this
chapter
Here's o program using ¢irs which displays the character set:

100 FOR J=32 TO 127 [RETURN]
190 PRINT CHRSCJ) [RETURNI]
120 NEXT J [RETURNI

RUN [RETURN]

29




KEYN and KEY$, GETN and GET$

In calculator mode you can find the ASCII code of a character by typing GETN [RE TUAN ]

then typing in the character. The computer will display the ASCII numben

KEYN and GETN both return the ASCII code of the key currently pressed, if no koy |
pressed, KeYN will give 0, but 6eTn will wait until a key is depressed, then retur |
code.

KEYS$ and GET$ are similar, but they return the character string of the key pressod 1/
key 1s pressed, Kev$ will return a 'null string’ (nothing), 6ev$, like GETN, will waill

These functions (like RAND) can be used to assign values to vaniables

LET V=KEYN
LET V$=KEY$
and with IF...THEN.
If, for example, you wanted to move a token around the screen using the arrow
you might do it like this:
IF KEYN=123 THEN LET C=C+1
IF KEYN=124 THEN LET C=C-1
and so on, where the token's position on the screen is represented by co-ordinatos |
(column, line) and 123 and 124 are the ASCII codes of the right and left arrow
respectively.

GETS amd
GETN

PARTS OF STRINGS

There are various commands which allow you to select parts of strings; these are
especially useful with 1F...THEN

LEFT$ and RIGHTS$
With LEFT$ you can select the left-hand side of a particular string, like this

LEFT$(string name, number of characters wanted)

30

IARE"LYNX", [hon

LEFIRIAN,,Z)

L3onk 't fosrggent ths Bvacokats o imad! The number of characters can be

ROGUTS o pbidan, bl o e plghl band sicle of the string, so

ML
Niik | iy part ol a string by specifying the number of characters
PHT Troinn o e bicnddag point in the string, like this
Ningisi i & I & iMmher of first character wanted,
number o! characters)
| t ol j mnumber 1Y number 2, and so on. If you wanted YN, you
1 Ming lils i AN LYNX")
Mihgi &b
HSEbEn that the numbers can be represented by expressions.
VAI
AL all e sslsct the numerical part of a string and process it like an ordinary
HEEE provicact 1 s al the beginmning of the string. If A is 32 pounds, then
ALLAR)
ol | 3§
IEHHEEE (8 Ho fnbet i the atring involved, the computer will return a value of o

VAL i aslect hexadeaimal numbers, provided they are marked with an & (for
HERacBoimal numbers, soe Chapters 15 and 16 on machine code)

ANl
ANULAN)

il dive you the code number of the first character of A$. So if As=LYNX it will return a
e ol T a

I AN L B stng), Asccas) will give you 13, which is the code number for a
CREHnge teturn (see Chapter 14)

PO

UFCBRLAR)

Wl anvert all letlers in as to upper case (but leave any numbers or symbols

unmlerad)

LEN

LENCRIFIng name)

fives you the length of the particular string, that is, the number of characters in it. So, if
AR=""LYNKX

LENTAR)




STRING EXPRESSIONS
You can join strings together, concatenate them, like this:

10 LET A$= "LYNX" + " COMPUTER" [RETURN]
20 PRINT AS [RETURNI

RUN CRETURNI
and this:

100 CLS [RETURNI

110 LET A$="32" [RETURNI]

120 LET B$="110" [RETURNI

130 PRINT "A$=";A$ [RETURNI

140 PRINT "B$=";B$ [RETURNI

150 PRINT LRETURNI

160 PRINT "A$+B$="; AS$+BS [RETURNI

170 PRINT [RETURNI

180 PRINT"VALCAS)+VAL(BS)=";VAL(AS)+VAL(BS) [RETURNJ
190 END L[RETURNI

RUN LRETURNI

IDEAS and EXAMPLES
Here is an example of string-handling:

100 REM ANIMAL LRETURNI

110 CLS L[RETURN]

120 DIM AS(24) [RETURNI

130 LET A$="DOGCATANIMALLYNXCOMPUTER" [RETURNI

140 PRINT "AS$ is ";A$S [RETURN]

150 PRINT LRETURN]

160 PRINT "A$ has ";LENCA$);" characters" [RETURNI

170 PRINT "The rightmost 8 characters are "; [RETURNI]

180 PRINT RIGHTS(AS,8) [RETURNI

190 PRINT "“The leftmost 3 characters are "; [RETURN]

200 PRINT LEFT$(AS$,3) L[RETURNI

210 PRINT [RETURNI

220 PRINT "A ";RIGHTS(A$,8);" is a ";MIDS(A$,13,4) [RETURNI
230 PAUSE 10000 L[RETURNI

240 PRINT "A ";MIDS(A$,13,4);" is a ";MIDS(AS,4,3) [RETURNI
250 PAUSE 10000 L[RETURNI

260 PRINT "A ";MIDS(AS$,4,3);" is an ";MIDS(AS$,7,6) [RETURNI
270 PAUSE 10000 LCRETURNI

280 PRINT [RETURNI

290 PRINT "Therefore "; L[RETURNI

300 PAUSE 10000 CRETURNI

310 PRINT "a ";RIGHT®(A$,8);" is an ";MIDS(AS,7,6) [RETURNI

RUN [RETURN]

32

Chapter 8:  EDITING

It biipatesd HEIBOK al e nailites [or editing programs
PHETIIES you Wikl want 1o alter your programs, You may want to Improve a program,
l.‘A.l il s tng chfferent, Or you may havie HLNM"UJW]U)]Vfﬂiﬂ@@(iK)COTIeC[
hie &ivon 1 ‘ 1 .
[ | R tEng siinple which does not stop the program running, a
Frlmtypoeel mtring hog Hipe O your program may have a bug
PIACHIS AV SR Jim program. We have alrendy seen that the computer checks each
HHE a5 1R Lypsd i, and that i a line does not make sense to the computer it will
PRSI WITh sl srror message, This kind of error is usually a syntax error, which
neans thal (he e o ot ahey (e fules of the Basic language; perhaps a command
hae el hjaa sl I O
Wit & Fanied s a chiterent g Ferror something which is acceptable to the computer,
bkl wihilich mal I pragram dlo things you did not intend, A bug may be the result
LR LV pstake BUb il inay be a falt in the construction of your program Finding
S0E VIOV LY g e debugging

REM

e nm command allows you to insert comments (REMarks!) into a program. These
i lanored by the computer whilst it is executing the program, but are saved and
Hatedd ke ordinary lines

10 REM comment [RETURND

AREN ay b inserted at any point in the program, and is used to label its various parts.
8 game, [or example, you might have

10 REM Setting up the board
100 REM Moving the players
d00 HEM The score

i aven have comments like
600 HEM The program works up to here.

O IRET EM i vialuable tool: if each part of a program is labelled it is easier to correct or
mprove i s alao oagier for other people to understand it.

33




LIST

Before you can edit a program, of course, you need to be able to examine it. L1§7
LreTURN] tells the computer to print a list of your program on the screen. When it
reaches the bottom of the screen, the computer will start writing at the top again, so lo
halt the listing for a time, press the [SHIFT]key; to start it again, release the [SHIFTI
key,
You can also ask the computer to list particular parts of the program. For example
LIST 100 LRETURN]
will list line 100 only. You can also specify blocks of program for listing:
LIST 100,200 L[RETURNI
will list all lines numbered from 100 to 200 inclusive.

DEL

You may find that you need to remove large quantities of the program. peL allows you
to delete individual lines, and blocks of lines, leaving the rest of the program
unaltered. It has a similar format to L15T. You can, for example,

DEL 100 L[RETURNI
which will delete line 100, or you can

DEL 100,200 L[RETURNI
which will delete all the lines from 100 te 200 inclusive

ESCAPE and CONT

A program may run for a long time, or may form a continuous loop which would run
forever, and it may not be doing what you expected it to do. By pressing thefesc] key
you can stop the program during execution. The computer will display on the screen

Stopped in line....

telling you which line was being executed when the key was pressed. The program 15

not impaired by this interruption, and can be restarted by either CONT or RUN,

CONT [RETURNI restarts the program from the point where it was stopped. RUN [RETURN]
restarts it from the beginning. These must be used in different contexts

Whilst the program is stopped, the computer can be used in immediate mode, fox
listing, examining or altering the values of variables, and so on, or for calculations
which have nothing to do with the program at all. If these do not alter the structure ol
the program, you can use the ¢oNT command to restart the program. If, however, you
save or edit the program, you will have to restart it by using RUN.

If you try to use cONT in the wrong situation, the computer will print Cannot continue. |l
this happens, the program will be intact, and can be restarted with RUN.

(If you are losing a game, you can also, of course, cheat by escaping from the prograin
then restarting it from the beginning using RUN!)
STOP
sToP 1s similar to [ESc]. It stops the computer during execution of a program - bul
unlike [Esc], it is written into the program. For example:

100 STOP LRETURNJ
As with Cesc], the computer tells you which line was being executed when the s1op

command appeared; you can use the computer in immediate mode, and restart th
program using cONT or RUN, whichever applies.

34

STOP o primarily & debugaing ool Itean be inserted at various points in a program
WHowing you to fry out small sections, monitor the values of variables, make small
dt@rationns, and 8o on, Onde YOUE progranm i running correctly, you can delete the sTop
‘“!!ll||l‘|
TRACE and BPEED
Pwo othess desbmcioing atcls are TRACE ancl S8PEED
IMALY ON [NETUNNI
TSI TS Sanpatst (o cinpliay the number of the line it s about to execute. If your
P a o oriething you chid not expect, you can turn on TRACE, run the
PG il ek clow the e which s at faull. To turn TRAcE off, type
TWALE GFF IRETINND
PRALE BN AREF Dan 18 dsed] lmichs o program, so you can use it on particular sections of
[RLEEIN REE AT
] WL REPEAT will only De clinplayed the [irst time they are executed: ELSE ig
(SR AR A mRlsasion af the 1F, . THEN line above, and is not displayed.
FRALE 18 fiodmally ol
LBl
SPERD number batwean 1 and 25%
YO ERE BlOW your prodgraan down, go that you can see exactly what it is doing: It works
By s the delay between program lines.
BFEED 1 0 [anlent
BPEED 26Y 10 Mlowenl
WREED O tetirnme 1o normal
LIRS THACE, BPEED 0an be used nside a program, so you can use it on particular
st i
HENUM
HUNUN aliowa you lo renumber your program. You use it like this:

RENUM number of first Line, rate of increase

HENUM 1000,100

would renumber your program so that its first line was 1000, and each subsequent line
number increased by 100, Alternatively you can use

RENUM number of first Line
in which case the computer will increase each line number by 10.
I you specily neither, the computer will start renumbering at 100 and increment by 10.

The numbers following run (Chapter 4), 6010 (Chapter 5), ResToRE (Chapter 10), and
60808 (Chapter 11), will be altered; but not those following LeTN (see Chapter 16).

IFyour program contains a 6070 (for example) to a line which does not exist, RENUM will
round it up to the next line number.

NEW
Iyou want to clear your program from the computer's memory, NEw [RETURNI will erase
It completely; there 1s no way of retrieving it. So, be careful with New!

35



EDITING INDIVIDUAL LINES

You will often want to alter a small part of an individual line. Editing on the Liynx has
been designed to be quick and easy.

If you have just entered a line, and the computer has displayed a syntax error or simili
message, you can enter edit mode by typing

[CONTROL] Q@ L[RETURNJ
and the computer will display the line, with the cursor positioned at the beginning

If the line you want to edit was entered earlier, type

[CONTROL] E LRETURNI
The computer will ask

Linenumber?

You then enter the appropriate line number, press [RETURNI, and the computer will
print the line on the screen, with the cursor at the beginning.

You can move the cursor

to the left using the left arrow,

to the right using the right arrow,

to the beginning of the program line using the up arrow,
to the end of the program line using the down arrow.

You can insert characters by simply typing them in: any characters to the right of the
cursor will be moved along.

Characters to the left of the cursor can be deleted by pressing the [oeLETET key. The
characters to the right of the cursor will move back to fill the gap.

When you have finished editing, press [reTugNI— the cursor does not need to be at the

end of the line — and the new version of your line will be stored in the computer's
memory, replacing the previous version.

36

Chapter 9:  STORING AND LOADING PROGRAMS

Cou iy have notiosd that typing proarams inlo the computer can be a long and
[bsar stk And when you awich the computer off, any program stored in its
fsiiory o etanec e possible, howeyer, [o glore programs on magnetic material and
P lomel thesr Iito ey, Microoompatars uge two main types of magnetic material:
e e e aned Doppy disks Ploppy disks have certain advantages over cassettes
el g e cnag ey fster 10 uge; Dut casseltes are much cheaper and more
ienerally avalabile, and lor most put poses very efhicient

Fhibs e gt Clesoni b thes commands avatlable for saving, loading and manipulating
RO oy cnmmette e, T do this succeslully it is best to use high quality audio
I of BRECIA] ooinper lnpes, and 10 ke care that you have installed the cassette
playsl conradtly (ees Chapler |)

Wittt thal iiost casselle thpos have a leader, and you will need to wind the tape
Pl ThieE Delars you oan reoord your program

P bt ol ol tolal disauter, 1L e probably best to make notes as you are writing
gonit proaian Ihen i you do make a mistake when trying to save it, you will at least be
SHUE o Ly T adain

BAVE

P BAVE & g you touet vy decide on a name for it. The name can be any
con et of characotars, as many as you like (within the maximum line length of 80
phE s e ) You oan save il |I'J [y in

BAVE "name'" [RETURND
'he patne it e in inmverted commas.
I st s reinote control lacility on your cassette player it will be controlled by the
Pt press down the record and play keys — the player will not start until you
Piean Lretuen g When the recording 1s complete the computer will stop the cassette
playest sitoimatically, but make sure you press the stop key on the player as well
I st 0 o remole meility on your cassette player, type save, press down the record
aiid play koys, thon press CreTusnI, When recording is complete, the computer will
tsplay the » prompl on the screen, and you can switch the cassette player off.
Liespiencding on the length of the program, saving can take from a few seconds to several
frilniten
Yol can save o program so that it will run automatically as soon as it is loaded by
wldding @ line number to the end of your save command, like this:

SAVE “name",10 [RETURNI
IMesre muat be a comma between the program name and the line number. The
program will then run antomatically from line 10.
| 18 wige (o make several copies of your program as recordings can easily be
damaged or acoidentally erased

VERIFY

Il you want to check that your program has been saved correctly, you can use VERIFY,
Rewind the tape. Type

VERITY "name"
Proma the play key on the cassette player, then press [RETURNI. The computer will read
thiough the program and check that it has not been distorted during saving. If anything

37



has gone wrong, it will display a Bad Tape message on the screen. Otherwise, it will jusl
display the » prompt.
LOAD
To load a program from cassette when you have a remote facility on your player, pre:
the play key on the cassette player and type

LOAD "name"
then press the [RETURNI, As it reads through the tape, searching for the program you
have named, the computer will display on the screen the name of each program il

finds. When the loading is complete it will display the prompt on the screen and you
can execute the program using RUN.

The cassette player will be stopped by the computer, but you must press the stop key
as well.
If you have no remote, type

LOAD "name"
Press the play key, then press [reTurnI. When the computer displays the prompt,
switch the player off.
If you included a line number in the $AVE command, load the program in the normal
way: once it has loaded 1t will run automatically.

If there was a program stored in the computer's memory before you loaded the
program, this will have been replaced by the new program.

APPEND

Unlike LoAD, APPEND allows you to add material stored on cassette to the end of a
program already stored in the computer's memory. To use it, type

APPEND "name"
Press the play key, then £rerurn1. The first line number of the material you are adding
must be higher than the last line number of the program already in memory

You can use APPEND to load programs that have been stored to run automatically
APPEND is particularly useful for adding subroutines to a program. A subroutine 1s a

38

MAARARANA
'ER'RERE

fnfanAnnannnnn
'R R RN

fl
6w

distinot part of a program which performs a particular operation we will explore
them i detatl tn Chapter 11 You can slore a library' of commonly used subroutines
ihd appand them o programs whenever you need them. But you must remember to
lore therm with fugh e nurber
MLOALD
Hyou wan! 1o loscl & machine code ITam rom lape you must use mLoa, It is used
[ WY e LOAD. thet |
MlLOAD UL LL
TAPE
Notimally, i HHPUtET 18 prograrmimed to savE and LOAD programs at a fairly slow
DU vt (Raud s the unit in which 'data low' is measured), The slower the baud rafe
e o e 10 s and the more nformation is recorded, so a slow rate 1s very
reliahl
H 81 You are loachng and saving very long programs (and want to save time),
il e the Daud rate, uding 1are, ike thus
TAPE Bumbier betvween 0 and 5
0 uesta the rate al 600 baud (the normal rate)
| 1 Hil
'l [ Nt
ol LBO0
[ 1 KD
il A LER)

o e high lape speod (4 and 8) successfully, however, you will need a good guality

et |-|x,| | .|H<|||<|<Hi\’H“IH‘,‘ |‘|l"":-i-

39



Chapter 10 MORE VARIABLES

ARRAYS

Suppose you are writing a program which involves processing a large amount of clali
and that each item is similar to the others: the items form a 'set’. They could be the
examination results of a class of 13 children, for example, which you want to proces i
some way. You could store each mark as a variable, and process each variable in i
Or you could set up an array.

An array is a special kind of variable; it consists of an ordered list of values. The viilu
have the same variable name, but are differentiated and ordered by subscripts, [1k:
this:

ACD). ACT1) AL2) AL3) cevaass
Array names are single characters, the letters of the alphabet, both upper and lowe
case. This means you can have a maximum of 52 arrays in any one program. 'The
subscripts may be numbers, or variables, or expressions. You can have up to 2000
members in an array!

You can have A$ A a A(x) and a(x) all in the same program, and the computer will
recognise that they are all different.

The computer treats all the members of an array as a single entity, and processes eacl)
member in turn, at a single command.

DIM

You have to define the size of an array before you use it, so that the computer can sel
aside memory for storing and manipulating it once the program is runming. To do this
you use DIM:

DIM array name(number)
where the number is the highest subscript you want. This specifies the size of the
array; the computer begins numbering at 0 and continues until it reaches the highest
value. 50,

10 DIM A(12)
would set up a list of 13 variables, with subscripts beginning at 0 and ending at 12

ACD) AC1) AC2) A(3).up to..A(12)

So, going back to the class of 13 children, you could write a program to calculate their
average mark, and the highest mark, like this:

5 REM find the average mark [RETURNI

10 DIM M(12) [RETURNI

20 FOR J=0 TO 12 [RETURNI]

30 INPUT "MARK";MCJ) [RETURN]

40 NEXT J [RETURNI

50 A=0 L[RETURNI]

60 FOR J=0 TO 12 LRETURNI

70 A=A+A(J) [RETURNI

80 NEXT J [RETURNI]

90 PRINT "The average mark was ";A/13 [RETURNI
100 REM find the highest mark [RETURNJ

110 LET H=A(0) [RETURNI

120 FOR J=0 TO 12 L[RETURNI

130 IF ACJ)>H THEN LET H=A(J) L[RETURNI

140 NEXT J [RETURN]

150 PRINT "The highest mark was ";H [RETURNI

RUN L[RETURNJ

40

-

You can set up several arrays in a single b IM statement, if you separate them with
commas:

DIM AC12), b(5), 2(10)
Arrays can have variables or expressions as subscripts. These are dimensioned like
this:

DIM a(j), B(20*a)
FOR...NEXT loops are particularly useful with arrays: you can setup a FoR...NEXT loop
which processes each member of an array in turn. For example, if you want to assign a
random value to each member of the array, you cando it like this:

10 DIM AC10) L[RETURNI

20 FOR J=0 TO 10 CRETURNI

30 LET ACJ)=RND [RETURNI]
40 NEXT J [RETURNI

RUN [RETURNI

READ DATA RESTORE

READ, DATA...RESTORE
Try this:

10 READ AS,BS,C$,D$ [RETURNJ
20 PRINT AS$;" ":;BS$;" ";C$;" ";D$% [RETURNI
30 DATA I,am,a,LYNX CRETURNI

RUN L[RETURNI
READ, DATA and RESTORE are used together, bATA allows you to store a series of values (to
be assigned to variables) on a program line. The line will be ignored by the computer
until it is told by a Read command to assign the values to the variables contained in the
READ statement. DATA has this format:

100 DATA 100,FRED,e*24,......

The values can be numbers or expressions containing variables, or string varables.
String variables should not be placed in inverted commas in a bATA statement. The
data must be separated by commas,

READ has this format:
100 READ variablel, variable2,.....

41



The vanables must be separated by commas, and can be numeric variables, ariays o
string variables.
The type of data must match the type of variable: if you tell the computer o

READ A
and the data it finds s a string, it will display an error message. Simularly, if you gk il t
read data and there is none, it will display an out of data message

When it comes to a READ command, the computer assigns to the variables in if th
values contained in the data statement, in the order that they appear. As it do

keeps track of its position in the data statement using a data peinter. If your proagiin
contains several READ statements you can build up a data block by grouping the a1 A
lines together. By using the data pointer, the computer will know which position i ()
data block to read from as it executes each READ command.

RESTORE

The data pointer can be returned to the beginning of the data block using RESTORI
the data can be used again and again.

It can also be restored to a specified line number within the data block, if only parts ol
the data are needed. The line number can be specified as a number or as an
eXpressiorn.

Here is an example of how arrays and ReAp, 0ATA might be used together to allow fairly
complex processing of information:

100 REM DAYS FROM 1st JANUARY [RETURNI
105 DIM N(12) [RETURNI

106 READ N(1) [RETURNI]

110 FOR J=0 TO 12 LRETURN]

120 READ N [RETURN]

121 LET N(J)=N+NCJ=-1) L[RETURNI
130 NEXT J L[RETURNI

140 INPUT "ENTER DATE dd/mm/yy";D$% [RETURNI

150 LET E$=MIDS$(DS$,2) [RETURNI]

160 LET D=VAL(D$)+N(VALCES)) [RETURNI

170 LET E$=RIGHT$(D$,2) [RETURNI]

180 LET E=VALCES) L[RETURN]

190 IF D>59 AND FRAC(E/4)=0 THEN LET D=D+1 [RETURNI

200 PRINT "There are ";D;" days from 1st January to ";D$ [RETURNI]

210 GOTO 140 LRETURNI]

220 DATA 0,31,28,31,30,31,30,31,31,30,31,30 LRETURN]

RUN CRETURNI

IDEAS and EXAMPLES

1. This program has a novelty; try running it.

100 DIM AC10) [RETURNI

110 FOR J=0 TO 10 LRETURNI

120 READ ACJ) L[RETURNI

130 NEXT J LCRETURNI

140 FOR J=0 TO 10 LRETURN]

150 PRINT CHR$ (ACJ)); LRETURNI

160 NEXT J LRETURN]

170 PRINT L[RETURNI

180 DATA 73,32,97,109,32,97 [RETURN]
190 DATA 32,76,89,78,88 [RETURN]

RUN CRETURNI

42

o 'I's program simulates a die

111WI“J1M|||hy.u|rﬁjq;;wpw|

10 RESTORE INTCRND#*G)#
20 FOR J=0 YO 2
$0 READ AS [RETURN]
40 PRINT A% [RETURND
S0 NEXT 0 [RETURND
60 PRINT LRETURN]

It 15 an example of restoring to a line number

1041000 [RETURND

[RETURN]

fO0 PAUSE 10000 [RETURND

BO G010 10 [RETURND
1800 DATA +vs2s¥es

1010 BATA %000y

1020 DATA AL TN
1030 DATA &, 8,,,,,%,#
1040 DATA &, %, %, & &
1050 DATA &, %, %, 4,8 &

RUN [(RETURN]

[RETURNI
[RETURND
[RETURND
[RETURND]
[RETURN]
[RETURND

43




Chapter 11: STRUCTURING COMPLEX PROGRAMS

A program begins as a problem. You organise 1, and shape it into a form which allow
the computer to solve it. As the the problems you tackle become more and mor:
complex, so your programs will become more and more complex.

But ideally, the shape of your program should always be as clean and simple as you
can make it. Fortunately, there is a structure in Basic which allows you to keep
complexity under control: the subroutine

A complicated operation, or series of operations, can be made into a subroutine which
can be used many times during a program run, and may be used by several differon!
parts of the main program

GOSUB...RETURN
Subroutines are controlled by two Basic commands, 60suB and RETURN
The computer follows the flow of the program until it reaches a

GOSUB Line number
It notes the line in which this command occurs, then goes to the subroutine ancd
executes the relevant operation. The subroutine ends with a

RETURN
which tells the computer to return to the main body of the program. Notice that RETURN
is not followed by a line number; the computer uses the information it stored carlicr |
return to the line following that containing the 60SUB.

44

10 GOSUWR 0600
20 GrOSUB 2000~
330 GOSUB Z000
—>NEXT LINE.

The cosus command on this computer has special features: its Iine number can be
ropresented by a variable, or an expression, So you can have
GOSUB A
01
GOSUB 1000+A
‘|||<| N0 OnN

In addition cosue can be followed by a label - like this, for example:

100 GOSUB LABEL name
e name can be any length, within the limits of the maximum line length of 80
charactars, but the shorter it is, the more efficiently the program will run because the
computer will be able to find it faster

The subroutine itself 1s labelled like this:

1000 LABEL name

1100 ...operation....
The label has two advantages: first, it is fast Second, it allows you to write programs
which are virtually independent of their line numbers.

[ GoTo RR: - NEXT GOSUB
10 FOR= musswed. | | 10 GOSUB 1000
M Fast 6 i NEXT LINE.
W@m- bwes r}MﬁtSﬂ:rUmm
100 GGTo IO NE?(T'
i (i

Thdiffamahwwmaor'
’FbR;--NEX'ﬁN\BG%SMB.

45



Here's a program which demonstrates how subroutines work:

100 CLS [RETURNI

110 GOSUB LABEL G [RETURNI]

120 PRINT "BACK FROM SUBROUTINE!" [RETURNI
130 PRINT "The key you pressed was ";G$ [RETURNI
140 GOTO 110 LRETURNI

150 REM [RETURNI]

160 REM START OF SUBROUTINE [RETURNI

170 LABEL G

180 PRINT "EXECUTING SUBROUTINE..." [RETURNI
190 PAUSE 10000 [CRETURNI

200 PRINT "Press a key!" [RETURNJ

210 LET G$=GET$ [RETURNI

220 RETURN LRETURNI

230 REM END OF SUBROUTINE [RETURNI

RUN LRETURNJ
6070 can also be followed by a label,

A complex program can consist of a short ‘'organising’ main program and a numbe:
clearly labelled subroutines.

PROCEDURES

Procedures are similar to subroutines, in that they form distinct parts of the prograim
and contain operations which can be called up by the main program. They can be
used many times and by different parts of the main program.

They are controlled by three commands:

PROC name
DEFPROC name
ENDPROC

DEFPROC
marks the beginning of the procedure, and is followed by a name, which acls as a
label, to distinguish one procedure from another. The name must not contain bracke!s
— we will see why in moment. The end of the procedure is marked by

ENDPROC
The computer is told to execute the procedure by the command

PROC name
in the main part of the program. (This is the equivalent of a 60SuB command)
The computer recognises spaces as part of a procedure name, (eg DEFPROC set ting up
the board). If you accidentally add spaces to the end of a pro¢ call it will treat it s o
different name, and will not be able to find the pEFPROC.
The procedure must be positioned se that the computer cannot run it except through a
proc call: that is, it must follow an END, or a 6070 which sends the computer back 1o the
beginning of the program. If it finds a pEFPROC during a program run, the computer will
display a Wrong mode error message.
Procedures are different from subroutines because you can pass parameters, valuos of
variables, from the main program into the procedure. When you define the procedun
you can follow the nefpro¢ with the names of the variables you want to pass values 1o
like this;

DEFPROC name (A,B,C)
The variable names must be in brackets (which is why the procedure name must no!

46

contain brackets) and must be

eparated by commas. These variable ne
as S arle e nam
illed the formal paramaoters -

The values you want 1o agsian to

those variables (the actua g
ineladdad i the rroc command lpaIaIneterS)drerhen

PROC pame €10, asb, RND#*100)
Again, the values mug be placed in brackets and separated by commas.
Hyou include an undefined vanable in the parameters you are passing, the error
0 WL Faport that the SHOE axists i the line containing the dEFPROC command,
WIEE Tt it s in the Line containing the proc call

I (N[

Wa hiave alrendy ussd the ron NEXT loo : i
y ¥ 0op, and seen how versatile it is.
UBo allows you 1o umse two other types of loop MR
REPEAT, UNTIL
NEPEAY UNT L s thig [ormat

100 REPEAT
110 operation
180 UNTIL condition

Pl opatation s repeated until the condition is fulfilled. When it is. the computer
continuss o sxacule the rest of the program

Reoaiime (h cormipuler leats t

| s 1 condition at the end of the loop, the operation 1s always
Eraricmect af jean! once

o

FEPEAT - UNTIL
» EEPEAT-

ANTIL. Conditron
———FALSE

TRUE,
[;:est & prograum...

15 an example of REPEAT...UNTIL in action: a guessing game.

10 REM GUESS A NUMBER [RETURN]
20 R= INTCI10*RND)+1 L[RETURNI
50 C=0 [RETURN]
40 REPEAT [RETURNJ]
50 LET C=C+1 [RETURN]
?ﬁ ;:P:T "What is your guess";G [RETURNJ
INT "You were"; ABS (G-R);"out!"
BO UNTIL 6=R LRETURNI : ] KRR
90 PRINT "It took you";C;"goes!" LRETURN]
100 END [RETURN]

RUN LRETURN]

47



WHILE...WEND
WHILE...WEND also creates a loop. Its format is this:

100 WHILE condition
110 operation
120 WEND

If the condition is true, the loop is executed until it becomes false.

Notice that the condition is tested at the beginning of the loop. If it is false the computes
skips to WEND, and executes whatever follows, This means that, unlike the
REPEAT...UNTIL loop, & WHILE...WEND operation may not be performed at all

TRUE and FALSE

e Lynx has iwo lunction WlH‘M‘lHlldIFA"IF‘!HHIR[PFAT...UNTILOIH
WHTLD WEND Into o continuous loop. These ar

TRUE Wil givi e of |
il

FALRE THeh gy v value of O
I'hey can be used like thi

HEPEAT
opEratian
UNTIL FALNE

WHILE - --WEND

el are roally intended o make the construction neal and legible
FRRON '

IARANnN
'R ERY

ENNON |

thrand which allows you to call up the Lynx's own error messages from

IHIN your prodgram
it haw this format
ERRON numbar

(Hhes oode number of plu||u|npgmp-pwumwiu1ﬂppendmj)

BWEND <

Here is an example of WHILE. . .WEND: @ program which prints numbers from | 1o 368 1)
decimal, hexadecimal and binary.

10 DIM A(7) [RETURNI]

100 FOR J=0 TO 7 LRETURNI

110 LET A(J)=0 [RETURN]

120 NEXT J [RETURN]

125 FOR I=1 TO 255 [RETURNI

130 LET J=0 [RETURNI

140 LET A(D)=AC0)+1 LRETURN]

150 WHILE A(J)=2 [RETURNJ

160 LET AGJ)=0,d=d+1,ACJ)=ACJ)+1 [RETURNI
170 WEND LRETURNI

175 PRINT I," ", #I1," ", L[RETURNI]
180 FOR J=7 TO 0 STEP =1 [RETURNI]
190 PRINT ACJ); [RETURNI

200 NEXT J [RETURNI

205 PRINT L[RETURN]

210 NEXT 1 [RETURNI

RUN C[RETURN]
FOR...NEXT, REPEAT...UNTILand WHILE...WEND can all be combined and nestad

48

49



Chapter 12: FURTHER MATHS

In addition to those we saw in Chapter 3, the Lynx has other mathematical capabiliti
When it prints out very large or very small numbers, the Lynx uses scientific notation
For example, one million (1,000,000) in scientific notation is

1 E+6
that is, 1*10**6, or 1 followed by six Os; and 0.0001 1s

1 E-4
You can enter numbers into the computer in scientific notation.

ROUND and TRAIL
Throughout a calculation, the computer works to an accuracy of eight digit: but when
it prints the final value on the screen it automatically rounds it, either up or down, 10
digits. You can turn off this rounding by typing

ROUND OFF
and back on again by typing

ROUND ON
In certain circumstances, you may want to be sure of the accuracy of a number. [n thi
case you can use TRAIL, which tells the computer to print the number adding trailing
zeros to bring it up to an accuracy of eight digits if rounding 1s off, or six if it 15 on. T
use TRAIL, type

TRAIL ON
to turn it off, type

TRAIL OFF

.2' 3 ‘
111)5'/////////”’/1”1///// 7

(27

[
iﬂwuzﬁzf:;'“%ZZZQZ%

V/ﬂ”fﬂ:

PARTS OF VALUES

Sometimes, you may want to use only part of a number or variable, say the intoge
(whole number) part. The Lynx has a range of functions which allow you to select pai
of a value, These all have the normal function format

function name (X)
where X represents the number or variable you want to process (the arcument ol t
function). It must be placed in brackets,

50

INT

INT 18 probably the most useful of these: 1t tells the computer that you want only the
integer part of the number or variable, 5o

INT (21.3650)

INT does not round the number up
FRAC
FRAC given you the fractional part ol a number

FRAC (5.54VH)

(i 0,800
ABG
ARg cute the sign olt a number or variable and gives you Just the digits, the absolute
e, Do i the value of A s <10
AS (A)
10
HCOIN
RON gives you the sign of the number or variable, expressed as either 1 or -1.

RGN C10) will et |
LN (= 10) will return - |

a0 1N a ppecial case

RGN (DY Teturna U

INF

PE relurns as s value 9.9999999 E+63, which is the closest number to infinity the Lynx

I able 10 process

Il you caldl 1hr when rounding 1s on, it will be rounded up to a number higher than the
coputer can process, and it will display an error message.

ARCSIN, ARCCOS, ARCTAN

ARCSIN, ARCCOS, and ARCTAN take, respectively, the sine, the cosine, and the tangent of
an angle as their argument, and return the value of the angle in radians. They have the
usual lunction format;

ARCSIN (sine)
ARCCOS (cosine)
ARCTAN (tangent)

DIV
pIV I8 an integer division operator
§01V 2 gives |

[t hay the same position in the algebraic hierarchy as division and multiplication.

51



MOD

moD is a modular arithmetic operator
5 MOD 4 gives 1.

It has the same position in the algebraic hierarchy as division an

multiplication

FACTORIALS
FACT (X)

returns the factorial of x (the factorial of 4,
function uses the integer part of X only

EXPONENTIALS and NATURAL LOGS

EXP (X)

for example,

returns the value of e raised to the power of «x.

LN (XD
returns the log

52

to the base e of x

1S

4)

HAHHHHT

Chapter 13: THE PRINTER

M you have a Lynx printer or a Lynx interface, vou will be able to follow the connection
instructions that come with o

II'you have your own printer anc want to méake your owrn interface, consult the

lechnical information on the Fxternal | onneclons sheet [A[.)[,Al,"l'ldl)(‘qj

Liynx Baaie han three printer commancls
LLIST

LLTRE i very simitlar to LIsT it tells the computer to list your program, but to the
intest :

It can be very usslul to have a hard copy' of your program: it enables you to see the

BHILE PIOgram al onee, to trace the flow of the program, and to note down any
thanges which need o be made

LERINT
ity LRRINT 1o the the printer equivalent of PRINT
LINK
ILINE |

L ipecial command which tells the computer to make, simultaneously, a printed
iy of anything which s displayed on the screen,

53



Chapter 14: GRAPHICS AND BEEP

GRAPHICS

THE COLOURS

The Lynx can display eight different colours on the screen. Each colour has a number
code, as follows:

0-BLACK

1-BLUE

2-RED

3-MAGENTA

4-GREEN

5-CYAN

6-YELLOW

7-WHITE

INK and PAPER
You can specify the background colour of the screen using either

PAPER colour number
or

PAPER colour name
You could type either PAPER 3 or PAPER MAGENTA, for example.

And you can specify the colour of the writing (and the graphics characters) usiig

INK colour number
or

INK colour name
All eight colours can be on the screen at the same time. Try this demonstration

10 PRINT "#*";[RETURNJ

20 INK RAND (8) LRETURNI

30 PAPER RAND (8) [RETURNI

40 IF INK=PAPER THEN GOTO 30 L[RETURNJ
50 GOTO 10 [RETURNI

RUN [RETURNI

INK and papER are also unctions: they return the code number of the current ink or
paper colour

PROTECT

Phere are thiee prmary colours REp, BLUE and 6REEN. YELLOW is made by adding red
el graen togethor, cYan by adding green and blue, and ma6eNTA by adding blue and
Fech WHETE 8 o up from all the primaries, BLACK from nene of them,
Fhie Lyt haw three banks of memory allocated to handling colours, one for red, one for
Bilie, anct ane lor grean; the other colours are created by combinations. It is possible,
aweaven, 1o stop the Lynx using one, two, or all three of these banks of memory, and
prrevent it lrom using particular colours, using PROTECT

FHOTECT colour l!!lll\\‘l'lfH-lllll‘
lopn the Lynx using the bank of memory specified, so

FROTECT
WL SO g iLue, Anything already on the screen coloured blue will then be
prratactad and cannotl be overwrilten or erased, even by using cLs, You will not be
thle o wiile in Bliis, or in colours which include blue: if you try to write in cyan, for
exaniple, only the green component will appear.
I you protect a secondary colour - for example,

PHOTECT MAGENTA

i Will digabile two primary banks, BLUE and RED

IEyou protect it e you will disable all three, and nothing will be written on or erased
orm g noree
POl dan anable all the banks again by protecting BLAck (disabling none of them)

FROTEET I8 a very uselul command, for two reasons. First, it means that you can draw a
Baokground in one colour and protect it, then use other colours in the foreground,
lEaving the background intact,

Hecond, because the computer is handling less memory when one or two banks are
dimabled, it works much faster. So if you PROTECT MAGENTA, you can work in green at
approximately twice normal speed,

THE GRAPHICS CHARACTERS

There are 32 graphics characters stored in the computer's memory, which can be
printed on the screen using

PRINT CHRS code number

or can be typed in through the keyboard if the computer is in graphics mode. To put it
in graphics mode, Nirst make sure that the [s#IFT LoCKT is In upper case, then type

LCONTROLT 1 [RETURN]
then press ts#1rr]and the appropriate key (see diagram).
10 exit graphics mode, type

LEONTROLT 1 [RETURN]
acadn

56



The graphics characters are

S EEH LN

[zl

259

242

245

243

T el | 1 i

56

FH

88880888808,

CddOdUdud

i ER
i d

You can use numbers 224 to 242 to build up simple shapes and textures, and number
242 can be used to ‘mix' colours

100 REM CHECK BLANKET L[RETURNJ
110 CLS [RETURNI

120 FOR J=0 TO 7 [RETURN]

130 PAPER J L[RETURNI

140 FOR 1I=0 TO 2 L[RETURN]

150 FOR K=0 TO 7 L[RETURNJ

160 INK K L[RETURN]

170 PRINT CHR$(242);CHRS(242);CHRS(242);CHR$(242); CHRS(242); [RETURNI
180 NEXT K [RETURNI

190 NEXT 1 [RETURNI

200 NEXT J [RETURNI

210 LET X=GETN LRETURNI

220 PAPER O L[RETURNI]

RUN LRETURNI]

Characters 243 1o 249, when printed side by side, form a Lynx logo.

HIGH RESOLUTION GRAPHICS

THE SCREEN

screen size is measured in dots or pixels; the Liynx's screen measures 256 * 248 pixels.
Every one of these dots can be processed: each one is labelled' by a co-ordinate
which describes its position on the screen.

In the computer's memory, the screen is divided into a grid. Starting at the top
left-hand corner, the columns of this grid are numbered from 0 to 285, and the rows
from 0 to 247. You can refer to each individual dot by its co-ordinate:

column number, row number

The co-ordinales can be expressed as numbers, variables or expressions.
THE CURSOR

When you enter text into the computer, your position on the screen is marked by a
cursor. The Lynx also has a graphics cursor but, unlike the text cursor, this is not a
visible symbol; instead, it s a position, stored in the computer's memory.

All the graphics commands involve moving the cursor to a new position, which you
specify using the screen co-ordinates.

MOVE
MovE has this format

MOVE co-ordinate, co-ordinate

It simply moves the cursor, from wherever it was, to the position specified by the
co-ordinates (it does not draw a line).

DRAW
pRAW has this format;
DRAWco=-ordinate, co-ordinate

It 15 similar to movEe, except that it draws a line as it moves the cursor, drawing in the
current INK colour.

a1



Here is a program which uses MoVE to set up a cursor position, then draws a line to
co-ordinates generated by the equations in lines 150 and 160, then uses MOVE again (o
shift to the next position (the result is very beautiful):

100 CLS LRETURNI

110 FOR J=0 TO 360 STEP 10 [RETURNI

120 MOVE 100, 60 [RETURNJ

130 LET X=SIN(RAD(J)) LRETURNI

140 LET Y=COS(RAD(J)) LRETURNJ

150 DRAW 100-60*Y,60+30%X [RETURN]

160 DRAW 100+60%X,60+30%Y [RETURNI

170 DRAW 100,200 LCRETURNI

180 NEXT J LRETURNI

RUN [RETURNJ
Try changing line 160 to

160 DRAW 100+60%X,200+30%Y [RETURNI

DOT

pDOT co-ordinate, co-ordinate
draws a dot in the current ink colour at the specified co-ordinates. You can colou
every position on the screen individually: here is a program which draws dots in
random colours at random positions on the screen:

100 REM RANDOM DOTS [RETURNI

110 PAPER BLACK [RETURNI

120 CLS LRETURNI

130 INK RAND(7)+1 [RETURNI

140 DOT RAND(240), RAND(240) L[RETURNI
150 GOTO 130 L[RETURNI

RUN LRETURNI

The next program draws dots at co-ordinates generated by a parametric equation

100 REM RANDOM SPIRAL [RETURNI

110 PAPER BLACK [RETURNI

120 CLS L[RETURNI

130 LET R=RAND(1440) [RETURN]

140 INK RAND(6)+1 LRETURNI

150 DOT 100+R/20%COS(RAD(R)) ,100+R/24*SINCRAD(R)) [RETURNI
160 GOTO 120 LRETURNI

RUN CRETURN]

PLOT

pLOT combines all the features of the three graphics commands we have just explored
It has this format:

PLOT mode number, co-ordinate, co-ordinate
It has five different modes:

0 is the same as a MOVE

1 is a relative move: the co-ordinates represent the amount by which the cursor 13
moved, not its final position.

2 is the same as DRAW

3 is a relative draw: again, the co-ordinates represent the amount by which the cursor
is moved,

4 1s the same as poT

58

HHHHHH T D

WINDOW and PRINT (@
These two commands are used for handling character strings, so the co-ordinates they
use are determined by the size of a character block (six pixels across x 10 pixels

down). If you choose a different multiple of pixels, characters will fall off one side of the
soreen and reappear on the other side (wraparound).

Using winpow, you can tell the computer to print on a particular area of the screen only;
anything displayed on the portion of the screen outside the window is left uncorrupted.

You use screen co-ordinates to specify the position of the window,
0-126 columns

0-248 rows

(Note that with wINDOW and PRINTA, the columns are 2 pixels wide).

If you are using the window to display text, your column co-ordinate should be a
multiple of three (six pixels) and the row a multiple of 10,

WINDOW has this format

WINDOW first column,last column+?,
first row,last row+1

The Lynx's normal text window is
3,123,5,245

50 lo revert 1o using the full screen area, use
WINDOW 3,123,5,245

Il the cursor is not inside the window when you set it up, you can move it there by
lyping

PRINT CHRS 23
or

vou 23
(see CONTROL CODES, later in this chapter).

Alternatively, use the arrow keys: the cursor will jump into the window when it reaches
one of the bOL.mds‘ Or you can use ¢Ls, which will clear the entire screen, inside and
outside the window, but will home the cursor to the top left-hand corner of the window.

You can move the cursor out of the window using PRINTA.

PRINT (@
You can use

PRINT® column number, row number;..
(roughly 0-124 columns, 0-240 rows) to position character strings on the screen. Again,
the co-ordinates you choose will be affected by the size of character block.
Here's a simple but attractive demonstration of PRINTa:

100 CLS LRETURNI

110 PAPER BLACK LRETURNI]

120 INK RAND(7)+1 LRETURNI]

130 PRINTQ RAND(125), RAND(240);"*"; [RETURNI
140 GOTO 120 [RETURNI

RUN CRETURNI

59




POS and VPOS

pos and VPos are functions which return the position of the cursor; pos gives the column
number, and vVPos the row number.

Like WiNDOW and PRINTA, POS uses columns which are two pixzels wide

BEEP
BEEP tells the computer to make a beeping sound. It has this format:

BEEP wavelength, number of cycles, volume
The wavelength can be between 0 and 65535 — the shorter the wave length the higher
the beep.
The number of cycles sets the length of the beep. It can be between 0 and 65535, Th
higher the wavelength is, the shorter the cycle is, so to get a high beep and low beep
of the same length you would need to make the number of cycles in the first much
higher than in the second - that 1s,

wavelengthxnumber of cycles
should be the same.

The volume can be set between 0 and 63.
Experiment with different values; try these to start with:

BEEP 50,1000,63
BEEP 200,1000,63
BEEP 5000,10,53

You can always stop the computer in mid-beep using [ESC].
(See also SOUND, Chapter 18).

CHANGING THE CURSOR

CCHAR
You can alter the text cursor.

The cursor is made up of two characters, printed alternately. The normal Lynx cursor
alternates between a block and a space, but you can specify different characters,
using two characters, a character and a space, or — if you want to stop the flashing - the
same character twice.

To redefine the cursor, first choose the characters you want and use their ASCII code
like this:

CCHAR first code*256+second code
Alternatively, you can convert the codes to hexadecimal (see Chapter 16) and lype
CCHAR &hex code hex code

with no space between the two codes. So, if you wanted the cursor to alternate
between a space and #, for example, you would take their codes, 32 and 35
respectively, convert them to hex, 20 and 23 and enter

CCHAR 82320

CFR
You can alter the rate at which the cursor flashes, using
CFR number between 0 and 65535

60

1 1s fastest
65535 1s very slow
0 is slowest

The normal flashing rate is about 500

CONTROL CODES: PRINT CHR$ and VDU

In Chapter 7 we examined cHr$ and saw that it was used to convert the ASClIcode of a
character into the character string itself. There are 256 possible codes (because
computer memory works in bytes, and the highest binary number that can be stored in
a group of eight storage spaces 1s a series of eight 1s, 11111111, which in decimal is
258)

The American Standard Code for Information Interchange (ASCII) allocates numbers
3210 127 to the normal computer character set, which includes all the letters of the
alphabet, upper and lower case, | @ # § % and so on, and the Lynx follows this
standard. In addition, on the Lynx, codes 128 to 223 represent another copy of the
character set, which can be modified into user defined graphics (see later in this
chapter) and codes 224 to 249 represent the graphics characters (described earlier in
this chapter)

Codes 010 31 are used to represent not characters, but cursor movements and other
graphics and sound commands; or sometimes combinations of them. You can use them
either like this

PRINT CHR$ (code number)
or Like this
VDU code number
CHR$ 15 a string function, and can be used to build up a string, like this!

100 CLS [RETURNI

110 LET A$=CHR$(24)+"LYNX" [RETURNI
120 FOR J=1 TO 9 [RETURNI

130 PRINT AS [RETURN]

140 NEXT J LRETURN]

150 PAUSE 10000 [RETURNI

160 PRINT CHR$(25) L[RETURNI

RUN LRETURNI

Clode 24 tells the computer to print double size characters, code 25 restores it to
normal,

vbU is a command, It can be used to build up a whole series of screen and cursor
commands:

100 VDU 4,18,24 L[RETURN]

110 INPUT "What is your name'";A$ [RETURN]

120 PRINT "HELLO ";AS$; [RETURNI
130 vou 18,25,10,10,10 LRETURNI

RUN [RETURNI
Code 21 (overwrite) allows some very interesting effects:

100 vbU 4,21 L[RETURNI

110 REPEAT [RETURNI

120 vbu 1,RAND(6)+1, RAND(96)+32 [RETURNI
130 UNTIL KEY$="S"[RETURN]

140 vbu 20 [RETURNI

RUN [RETURN]
L@t the program run for a few screens; you can stop it by pressing s.

61



All the codes are listed below:

0 not implemented

1egyVvou1, colour number
changes 1NK to specified colour

2egVvou 2, colour number
changes PAPER to specified colour

3 not implemented

4 clears screen and homes cursor

5 moves cursor up one pixel line

6 moves cursor down one pixel line

7 beeps

8 backspace and erase character

9 tabs cursor to next field

10 line feed (moves cursor down 10 pixel lines)
11 not implemented

12 moves cursor one character block to the right
13 carriage return, line feed, clear to end of line
14 tUrns cursor on

15 turns cursor off

16 moves cursor to top of screen

17 not implemented

18 swaps INK and PAPER colours (inverse video)
19 carriage return and line feed if cursor is not at beginning of line
20 overwrite off

21 overwrite on

22 backspaces cursor

23 homes cursor (takes cursor inside window)
24 turns double height characters on

25 turns double height characters off

26 not implemented

27 not implemented

28 moves cursor up 3 pixel lines (superscript)
29 moves cursor down 3 pixel lines (subscript)
30 clears to end of line

31 carriage return, line feed

USER-DEFINED CHARACTERS

Character blocks on the Lynx measure six pixels across and 10 pixels down, and are

62

macdle up of a pattern of dots and spaces, like this

ARERARARHA
EEUHUHU%HJUUUUH

TERAERARN
'S

1
i dR

-

I

Bach horizontal line of a characler takes up a byte of storage, so an entire character
takes up 10 bytes

Il you lake a piece of squared paper, mark out a rectangle of 6x10 squares, then draw a

pattern by filling in squares inside the rectangle, you will have designed your own
haracter, which you can then feed into the computer.

Remember that if you are designing something which needs a space between itself

and the next character, like a letter, you will need to incorporate the space into the

design. On the Lynx, the first column, the top row, and the bottom 2 rows of a character

are generally left blank (these make the spaces between the letters and the lines

when text 18 displayed)

But if you are designing a graphics block you may want it to fill the whole space.

Cnee you have your design you can program it into the computer. There are several

furictions to help you do this: ALPHA, GRAPHIC, LETTER and BIN.

To see how they work, let's take an example. Let's suppose we want to define an

invader’ First we need to draw out the design on squared paper;

[

63



Notice that the invader is made up of three characters, and that the middle character
needs to be printed three pixel lines higher that the other two,

Here's how to program the invader into the computer;

100 RESERVE HIMEM-30

110 DPOKE GRAPHIC, HIMEM

120 FOR J4=0 TO 29

130 READ A

140 POKE LETTER(128)+J, BINCA)
150 NEXT J

160 DATA 010001,010001,011111
170 DATA 011111,000001,000011
180 DATA 000110,001100,011110
190 DATA 110011

200 DATA 010010,010010,011110
210 DATA 111111,001100,001100
220 DATA 111111,111111,010010
230 DATA 010010

240 DATA 100010,100010,111110
250 DATA 111110,100000,110000
260 DATA 011000,001100,011110
270 DATA 110011

280 CLS

290 FOR J=1 T0 11

300 READ A

310 LET A$=A$+CHRS(A)
320 NEXT J

330 DATA 24,1,2,128,28,129,29,130,25,1,7

400 PRINTQ 60,60;A%;
First we need to set aside memory for storing the characters. This is done usinc ]
RESERVE and HIMEM, in line 100 (for more about these, see Chapter 16). A character
takes up 10 bytes of memory, so we need to reserve 30 bytes.

The Lynx has two 'pointers’ stored in its memory, which tell it where its character set is
stored: ALPHA and 6RAPHIC. These are two-byte locations which store the address of the
beginning of the standard character set and the address of the duplicate character set
(128 to 224) repectively. ALPHA could be used to alter the normal character set (o
Incorporate accents, for example. But GRAPHIC is the pointer used for defining extra
characters.

Line 110 makes 6RAPHIC point to the extra memory we have set aside.

The design of the characters is stored as a series of 10 lines of six 0s and 15, (1
represents a shaded square, 0 a blank square), BIN, used in line 140, is a function which
persuades the computer to treat the 0s and 1s as a binary number

These numbers are ‘poked' (see Chapter 16) into the reserved memory by line 140
LETTER is a function which uses the value of 6RAPHIC to calculate the address of the {1l
line of the character specified - in this case, number 128. The FoR. . .NEXT loop aclds
one to this each time it runs, so the values are poked into 30 consecutive bytes

Now the characters have been defined, lines 280 to 400 tell the computer how to 1
them. Line 310 builds up a character string from the data stored in line 330, using s
of the control codes we explored earlier. In particular, note the use of codes 28 and 20
to print the middle character higher than the other two,

You might like to change the end of the program to

400 FOR J=10 to 90 [RETURNI
410 PRINT® 60,J;A$; L[RETURN]
420 NEXT J [RETURNI

and make the invader move.

64

.
i dd

HHH

Then try changing line 410 to

410
or

PRINT@ J,J;A%;

410 PRINTE 40,J;A%;8 60,J;A%;3 80,J;AS;

Every time the program runs it reserves more memory: eventually the computer will
run out of memory. You can get round this by running the program from line 110.

IDEAS and EXAMPLES
Watch this!

100
110
120
130
140

RUN

LET BS="#"+CHR$(22)+CHRS(S)
PRINT@20,240; [RETURNI

FOR J=0 TO 220 [RETURNI
PRINT BS [RETURNJ

NEXT J [RETURNJ

CRETURNI]

[RETURN]

68



Chapter 15: WHAT IS MACHINE CODE?

This chapter is intended for people who know nothing about machine code. If you ar
already familiar with it, you can skip to the next chapter, which describes the Lynx's
resident monitor, and several interesting Basic commands.

Machine code programming is a complex subject; the Lynx computer uses a Z80
microprocessor and so you will need to refer to a Z80 programming manual. But this
chapter is intended to give you some idea of what machine code is

Machine code has some important advantages: first, it is very flexible: you can use it o
do things not possible in Basic; second, and perhaps most important of all, it runs very
fast — and that can be very useful, especially in programs using graphics

The microprocessor performs operations using a very simple language, called
machine code. In the introduction we saw that the microprocessor could do nothing on
its own. but was provided with instructions by a resident program which is writtén in
machine code and stored in ROM, When your computer is on, it constantly runs thi
program, which is called an interpreter. It is the interpreter which allows you 10 wril
your programs in a language other than machine code: when you run your prograim
the computer is in fact running its interpreter and using your program as data

On the Lynx, the interpreter allows you to write in Basic; though it is possible 1o obtain
interpreters which will allow you to use other languages.

The Lynx's interpreter also allows you to include small amounts of machine code in
your programs — see the special commands CODE, LCTN, and caLL described in the nexl
chapter.

In addition, the Lynx has a machine code monitor, which provides you with faciliies [or
writing, running, saving, and editing machine code similar to those available in Basi

So what 1s machine code like?
The Z80 microprocessor has various specialised parts: it contains, for example, an

66

AAAARAAARYN

EHHBHEHEH!HE
EEddEdedUUREUdUUdd

B.,

Anthmetic-Logic-Unit which performs calculations, and an overall control unit which
jupervises the parts of the processor, sending the correct data to the correct place and
50 0N

But the most important features of the Z80 - to the programmer — are the user registers.
A register 1s a single byte location within the Z80 itself, a place where data can be
tored. The user registers are places which can be accessed by the programmer, and
the majority of machine code programming consists of manipulating data in these
registers

The registers are generally used as register pairs, Their names are

AF HL DE B
AF' HL' DE" BC' IX 1Y SP PC

some of the register pairs have specialised [unctions and are used for manipulating a
particular type of data

Try calling up the Lynx's machine code monitor - type:
MON [RETURNI
and the computer will display the value stored in each of these register pairs.
[f you type § (e rurNT the computer will clear the screen.
Now Il you lype 0 [RETURNI, the computer will display a table of the contents of part of

its mamory. The numbers in the middle part of the table, like ¢9, 4¢ and so on, are
machine code mstructions

You can ¢uit the monitor by typing J [RETURNI.

The 280 recogmses a finite number of instructions:about 500. Each instruction is very
pecific and 1s represented by a code number. The processor recognises the code
and execules the appropriate operation.

For convenence, the programmer enters these codes in hex: hexadecimal (base16)
numbers

DECIMAL HEXADECIMAL
() {0

| |

| 3

q 4

4] 3

6 6

{ /{

3 8

it Y

10 A

I B

12 C

13 D

14 E

16 B

1§ 10
100 64
1000 JE8
10000 2l10

67




At first sight hexadecimal may seem like an odd choice, but it is very convenient A
single byte can be represented by two hex digits: the right-hand digit represents the
right-hand four bits, the left-hand digit represents the left-hand four

Each of the 500 or so Z80 commands, plus any data they require, can be represented
by a hex number or numbers, It 1s in this form that machine code must be typed
either into a cobE line in a Basic program, or into memory using the machine code
monitor.

If you want to know more about the individual commands and their codes, you will
need to consult a Z80 programming manual,

ASSEMBLY LANGUAGE

Writing machine code in hexadecimal numbers 1s a laborious task. But using a
program - similar to the Basic interpreter — called an assembler, 1t is possible (o
program in machine code using mMnemonics, which look like this:

ADD HL,DE
(this adds the contents of registers HL and DE together and stores the resull in HL)

68

'EE R REE

‘TR R R R

n"RERAOOAARRNARAAARAAARARRAN

i

Chapter 16 (10H): MACHINE CODE

This chapter is intended for people who already know something about machine code
and how to use it. It explores the Basic commands available on the Lynx for
incorporating machine code into Basic programs, and also lists the commands
avallable on the Lynx's machine code monitor

HEX NUMBERS: PRINT # and &
Using

PRINT # expression

:‘.;L:,‘|“,.I!:‘II||‘}.‘I.I.!:I|;,; :r»m; uter to print the expression in hex. It will display an H after the
AO2FH
You can input a hex number if you mark it with an g, like this:
KADZI
HIMEM

-i(fg@* : , \/%Aﬂw

| BASIC wark, | BASIC Ay afa«s :

| BA : o s, f

| Ao ' | Shwas— Stack —;-Lbh
| Cnvinblss, | ook D 1S g

| ' : '

; buffers, : |' i
Mo ) ! :

| Stack,ek)id Yo ; : i

| 2 hee < | s e

1 E I !

; . 1 S sack |

[ . t o - :

: - [ 580 Ly i

. : | {GY'MW 1

: i | (A% HERE | ]
PEEK and DPEEK

You can examine the contents of a memory location using PEEK.
PEEK (address)

the address must be in brackets.
DPEEK (address)

[ xl imines two adjacent locations, at the address and the address+1. It returns a single
value,

256%(contents of address+1)+ contents of address
Thus 18 the equivalent of a

LD HL,(address)

69



POKE and DPOKE
You can insert information into a location using PoKE. It has this format:

POKE address,value
The value can be between 0 and 9.9999999E7, but the computer will convert the value
to modulo 286, The address can be between 0 and 9.9999999E7, but will be converted
to modulo 65536 (64K),

DPOKE address, value
loads two adjacent locations with a value. The Least Significant Byte (LSB) is loaded
Into the address, and the Most Significant Byte (MSB) is loaded into the address+ |
This is equivalent to a

LD (address), HL
pprokE is useful for changing vectors.
CODE, LCTN CALL and HL
These four commands make it easy for you to incorporate machine code routines i i
Basic program.
copE allows you to store machine code in an ordinary program line; and allows you (o
type it in directly. A line will look like this:

10 CODE 23 9
The code is typed in as a series of hex values, separated by spaces, but not, in this
case, marked by an & As the line 1s stored in memory, the computer converts the
values into their binary equivalents and stores them in successive bytes. In
memory the line above would look like this;

*
| 1 1 ‘“‘d”
LINE NWUMBER. COBE || 22 | ¢q |[OoDH
l l | ti}m. TokEN b g
LCTN fumasbus BYTE

The line number takes up 5 bytes, and the line length is stored in the following byle
Next comes the command, cobE, stored as a token. The following bytes store the hex
numbers. 0DH is a carriage return, which marks the end of the line

conE allows you to store the machine code; ordinarily the computer will ignore & coot
line, (like a Rem statement). There are other Basic commands which enable you o il
the computer to execute the stored code

LCTN (line number)
tells you the address of the first byte following the command token of the line you
specify (this is marked by a star in the example above). Using it, you can poke values
into program lines. For example

POKE LCTN (10),7
would change the contents of the starred byte (in the diagram above) from 23 to 7
The most important use of LCTN, however, is with c00e and CALL.

CALL address
CALL is the machine code equivalent of cosug: it tells the computer to find and execute

10

AFRA
'y

HHananl

the machine code subroutine at the address specified. If you have stored the
aubroutine in copE lines,

CALL LCTN (line number of CODE Line)
sends the computer to the address in which the first byte of your subroutine is stored
and talls it to execute the codi
If you wani to use some part of the Basic program, the value of variable v for example,
in the machine code subroutine, you can transfer it to the HL register using

CALL address, value
For example

CALL address, V
would put the value
HL

When the computer finishes executing the subroutine, it stores the final value of the HL
teciter pair as a read only variable nL. This new value can be returned to the Basic
procrann

ol v into the HL register before the subroutine is executed

HIMEM and RESERVE

HIMEM 5 0 read-only vanable which tells you the first free address after the stack (see
the memory map). it lells you the lowest position in memory from which you
can atart to store machine code

RESERVEexpression

allows you to move the stack to a lower memory location, to increase your machine
cocle slorage area. ''he expression is an address; in effect a new HIMEN value.

If youl try o move the stack too far (so that it would corrupt other stored material) or if
you try to move it to a mgher location, you will be given an error message.

BINARY OPERATORS
The Liynx hag three binary operators:
binary AND
INOR - binary OR
binary EXCLUSIVE OR
which allow 16-bit binary logical operations, like this:
A BNOR B
BNAND has the same priority as AND, BNOR and BNX0R have the same Priority as oRr

HNAND

BNXOR

INP and OUT

The microprocessor communicates with other parts of the computer, and with

paripherals, through IO (Input/Output) ports. Like the RAM. the values of these can be
examined and altered

INP (port)

allows you to examine the value of a Z80 port, It passes the argument to BC, then
periornms an |

IN A,(C)
Note that A8-A 1S contain the value of B during an INA,CC).

71




OUT port, value
sends a value to a specific port. It performs an
oUT (C),A
where A contains the specified value and BC the specified port. Note that A8-AlS5
contain the value of B during an ouT () ,A.

SOUND
SOUND address,delay betweenoutputs

sends the computer to the address specified, and tells it to convert the values found
from there onwards into sound. It will stop when it finds a value of 0.

The delay between outputs can be any number between 0 and 65535.

Using ResERVE and HIMEM, provided you have enough storage memory space and can
work out the necesary values, you can build up sound effects (even synthesise
speech!) by poking the values into memory. You can then run them, using SOUND

THE MONITOR
The monitor can be called up by typing MoN [RETURN]. Initially, it will display the
contents of the Z80 registers, like this:

=

> MON <= Colls wp mawtar

D28 D3E5 E2A5 BCAG
ADOA Pgab 433% 205F E2Mm FBFC 2345

L, S
T% #* D(—*Mﬂvtmrrrﬁwpt M Crser
AF HL DE BC
AF H' DE' BC IX IYSPPC

ftags of

e

The contents of the registers are stored, then replaced when you leave the monitor
The special monitor promptisa *,

If you make a mistake, using the wrong format for a particular command, the compuler
will display ?7?27.

Here are the monitor commands, in alphabetical order; the symbols X Yand Z
represent hex numbers.

A: arithmetic

AXY

A displays X+Y X-Y 22

where 11 is the jump relative required to get from x to Y. If a jump is not possible the
computer will display 77.

Examples:
A145 111 will give 0256 0034 CA
A 23456789 will give BACE BBBC ??

12

HHHHH e aananll

I breakpoint
nxn

i b used 1o -“.--I i breakpoint. A breakpoint s a debugging tool which lets you break
nto g program, You set the breakpoint in a particular part of the program. When the

camputar reaches i, 1t slores the contents of the registers and passes control to the
monitor. You can then examine the contents of the registers,

X will set o breakpoint at x

I'he value X onaginally contained will be stored and can be restored to ¥ using
i

rou cannot set two breakpomts. only the last one entered can be restored
J‘-‘ulu||||".

BAO00 will sl a breakpoimnt at A0o0

B will restore it

C: copy (see also

CXYd?

( copies contents of memory from x to v for z bytes. It will copy the contents of address
Kinto address v, of address x+1 into address v+1, and so on 4

Ifthe two blocks overlap, the contents of block x will be corrupted.
};.‘\Illil'l'".

CAQOO AQDOT Y00

will copy the contents of A000 to AD01, A00
8¢ ) | 1 1o A002...s0 the contents o
teproduced throughout A000-A101 AL e

D: dump to cassette

BXYI"name"

b -Ilmu] 1510 casselle the contents of the memory from x through to ¥ with a transfer
ucldress of 2 and a specified name which must be in inverted commas.

I'he transfer address is the point in the program from which it will start to run
(automatically) when 1t 1s loaded into the computer. If you do not want the program t
run autornatically, use a transfer address of 0. g

The name can be any length.

Example:

D ADODAFFFADOO"TEST"

:Tl:lk] ;Lill:llxli;l»'ntn;}mury from A000 up to AFFF inclusive, with a transfer address of A000 and
E: execute

X

i x downloads the registers which were stored when you entered the monitor, then
oxecutes the code from address x. ’

I executes from the stored program counter. It can be used after a breakpoint.
Example

I A000 will execute from A000.

13



F: fill

FXYZ

f will fill memory from X to ¥ inclusive with byte z.
Example:

F ADDO AFFF7E

will fill from A000 to AFFF with 7E.

G:go

GX

& will execute code from ¥, like a subroutine call. You can use it to add commands (o
the monitor.

pE will point to the first byte after x in the 6 command, so you can pass paramelers [o
the routine.

Examples:

6 A000 will call subroutine at A000.

Ifat 00D was

LD A,"#" ; Load with ¥
JP DSPLY ; Jump to display subroutine

the 6 A000 will display a #.
Ifat AD0D was

INC DE ; inc to next byte
LD A,(DE); get byte
JP DSPLY ; display

the 6 A000 * will display a *¢ ynpg 7 will displaya 7

(These examples are purely illustrative!).

H: hex dump
HX H

#x dumps memory from x onwards to screen as hex and ASCII In the ASCII, bit 7 is
reset.

H dumps from the last Hor M, L, W etc.

Example:

HBIEQD may give
B1ED DD 49 C9 4E 4B 45 59 D2 PIINKEYR
B1E8 4E 44 C8 4C DO 4F 53 D6 NDHLPOSV

for 16 lines.........
Non-displayable ASCII characters are represented by ...

I. intelligent copy
IXYz

1 moves blocks of 2 bytes from x to ¥ intact. If the blocks overlap, the block starting at x

will be moved without corruption to startat v.

74

! jump to Basic

| returns the computer to Basic

Li! locate

LXY

Llocates occurrences of byte ¥, starting at x, through to the end of memory. The
address ol ench occurrence will be displayed. It can be aborted by pressing [Esc]
M: modily

AXYTYZEYIYA,, . YN

M X

M

M et you examine the contents of ROM or RAM, and change the contents of RAM.
I'o use 1, type

M, [allowad by the address you want to modify, The display will be in this format:
address contents cursor

Ilyou want to change the contents, lype in the appropriate hex value, and press
LreTuRn] The computer will display the next byte.

You can type a series of hex values separated by spaces, and these will be stored in
jccessive addresses

IF'you dlo not want to change the contents, press [RETURNI, and the computer will

chinplay the next byte
You can backspace by typing / [RETURNI
You can quil modify by typing . LRETURNI.

Example

('The slanted type on the left shows the computer's response)

#M AOO0 LRETURNJ

AQ00 <F3> 2E [RETURNI
AQ01 <21> 3E [RETURNI
AQ02 <07> &b [RETURNI
AD03 <A0> 56 56 67 67 [RETURNI
AO07 <E3> [ [RETURN]
ADO6 <67> | [RETURN]
ADOS5 <67> | [RETURNI
ADO4 <56> | [RETURNI
AO03 <56> [RETURNI
ADOG <565 [RETURN]
AQ05 <67> . [RETURNI

*M [RETURN]
ADOS <67> 11 22 33 44 [RETURNI
AQO9 <22> ., [RETURN]

M ADDD 22 33 44 55 66 [RETURN]
AQOS <11> , [RETURN]

75




O: output to port
0xXY

0 outputs byte ¥ to port X (it is the equivalent of 0UT X, ¥ in Basic), doing an

ouT (C),A
where BC=x,A=Y.

P: increment program counter
P X

p increments the stored program counter by X.

Examples:
p 1 increments the program counter by 1.
P FFFF decreasesit by L.

Q: query port

ax

a will display the input from port x: it does an
IN A,(0)

where BC=X

R:read tape

R"NAME"

R will read a file with given name from cassette. The name must be in inverled

commas.
Examples
R"FRED"

will load file FRED.

S: screen clear
s clears the screen.

T: type into memory
TXtext

1 allows you to type ASCII into memory, to be stored from X

Example;
TAOOOLYNX

will store 4C at ADDD 4C=L
59 at A00159=Y
4LEat ADD3 4E=N
58 at ADD3 58=X

U: update register
UregX

u allows you to change the value of the stored register pair specified to X.

76

PR IR R R R R R R RNy

_BRHHHRBHHEE&RHHHEHHERRHH

Lxamples
UAr&027 will change stored ar to 4027
uoe' 2348 will change stored pe' 1o 2345
Valid ri CHElETS A

AV HL DE BC AF' WL' DE' BC'

IX 1Y §P P
Viverily

VXYl

v will venfy that the block of 2 bytes starting at x is the same as that starting at Y. The
computer will chisplay address s of any '-il?‘-"l"[hlnlfl&'&;

Example
YADDD BODO 200

will check that AD0O to A1FF 15 the same as 8000 to B1FF

W word (see also L)
WXy

W xlml\ search for word ¥ from x to the end of memory. The computer will display the
acldress of esach occurrence

H‘lm that the computer will search for the LSB of ¥ at the address, and the MSB at the
nddress + |
X

X clisplays the contents of the stored registers and the flags of F, in this format:

Al HL DE BC
AF' HWL' DE' BC' IX 1Y SP PC

Z

1 will cisplay the stored registers and what they point to.

i



Appendix 1: ERROR MESSAGES

If you make a mistake whilst programming, the computer will tell you by displaying an
error message and the number of the line in which the mistake occurred. The eriol
messages are designed to be self-explanatory, but have been listed here in
alphabetical order, each with its code number, and some with a short explanation

Bad tape 29 will appear if, when you ask it to verify a recording of a program, the
computer finds that the recording is corrupt

cannot continue 17 indicates that, since stopping the program with [ESCJ, you have
altered the program in some way, so that cONT cannot be used: you must restart th
program using RUN.

Divide by zeroerror 5 tells you that you have tried to divide by 0.

ENDPROCwithout PROC 28

Functionargument error 9 appears when the argument given to a function is outsicle
allowed bounds of the function: for example,

SQR(-1)
would produce an error message, because only positive numbers car form the
argument of saRr.
GOSUBwWithout RETURN 27
Line, label or PROC not found 12 will appear if, for example, you have used a 6070 line
number which does not exist.

Line too Long 16 appears as you enter a line and tells you that you have exceeded the
maximum number of 240 characters in that line.

Missingbracket 4 appears as you enter a line if it contains an unmatched bracke!
NEXT without FOR 20
Number out of range 13

out of data 18 tells you that the computer has read all the data available, but is being
asked to read more.

out of memory 1 indicates that you have filled all the computer's RAM. It will occur 1l you
are trying to load a program from cassette which is too long to fit into RAM

overflowerror 6 tells you that a number has occurred which is too large for the
computer to process, perhaps generated within your program.

Redimensioned array 11 warns you that you are trying to redimension an array
REPEAT without UNTIL 26

Returnstack full 25 tells you you have nested FOR...NEXT loops, elc, too many time
RETURN without GOSUB 19

somethingmissing 8 appears if you have forgotten to type in an operator or an operandd

stringerror 3 appears if, for example, you have a string longer than 127 character:

Subscript out of range 14 tells you that you are trying to use an array which is outsicl
the range you set up in your array: for example, trying to use A(12) after

DIM AC10)

Syntax error 7 appears when the structure of the line is not intelligible: that is, when if
does not conform to the pattern the computer expects.

78

La u

Typemismatch 15 appears if the computer is expecting one thing and is given
gomething else

Undefinedvariable 21 indicates that you have tried to process a variable which has not
praviously been assigned a value

UNTILWithout REPEAT 22

WENDwithout WHILE 23

WHILE Without WEND 24

Wrangmode 2 Will appear 1if you are trying to do something in calculator mode which can

only be done in program mode, and so on

79



Appendix 2: SHORTHAND

The Lynx has a shorthand facility, to make typing in programs quick and easy

Insted of typing in the entire command, you can type in an abbrewiation, followed by a
full stop. The shortened version must be long enough to distinguish the command [rom

any similar command. For example,

L. cannot be used for L1sT, because of LET, but L1. is sufficient.

AUTO can be shortened to A.
FOR can be shortened to F.
REPEAT needs REP.

and so on.

SINGLE KEY ENTRIES
In addition, some commands are represented by a single letter, and are entered in by

holding down the [Esc] key and typing in the appropriate letter.
Wherever possible, a letter has been chosen because it is an abbreviation « of the

command.

You may find that the most convenient policy is to learn and use just a few of them

A Auto 0 endprOc
B Beep P Proc

¢ Cont Qrem

b Del R Repeat

E data s Stop

F deFproc 7 Trace

6 Goto u Until

H gosub v Verify

1 Input W While

J label X wend

L List Y run

M return 1 restore

N Next PRINT can be abbreviated to ?
80

HJHHHEBEEEBEuaunang
'‘ER RN 'R

Appendix 3:

ASCII CODES

39
I 33
]

24
# =5

2
% 37
& 3%

&1
( %
) 4

X 4o
+ 43

' \V
i
Q ™

&

O
o I IS

52

/
&
i
2
3 4
4
]
6 54
5

K
o »® > (0

56

53

00
6l

ot
05

6]

~ T o MM v

g 2 iR

6%
o1
/o
1l
72

74
7
7o

Ui

81




J

'R

; go|l \ 4d2| h lo4]| € lib
Q @] B| L 5w 17
R % € 9 J lob| v 118
S 83| __ 94|k o7 W 19
T #| E | L 8| x (2
W | & 99\m 9 Y 12)
(V &l b B|n 10|z 122
W &|c aq|o |+ 122
X | d loo p 2]« 14
Y ®|le 100fq U3\ 125
7 al| f gl r |y 2
[ a|g 13B]|S IS5 D 127

fAARRANR

Appendix 4:
EXTERNAL
CONNECTIONS
TO THE LYNX

w2 A3 far
3 Bl dalld 23 ~T
id

83



Appendix 5: SUMMARY OF LYNX BASIC

Anything in jtalics s optional.
Maximum line length is 240 characters.

Variable names are single characters, letters of the alphabet, upper and lower case
variables.

Array names are single characters, letters of the alphabet, upper and lower case, 5¢
arrays.

AS A aACx) a(x) canall be used in a single program.

BASIC STATEMENTS

CALL
tells the computer to execute a machine code subroutine at specified address. It i
particularly useful with LCTN and CODE

CALL address

CALL LCTN (line number)

CCHAR
defines cursor characters

CCHAR hex code

CFR
sets cursor flash rate

CFR number

1 (fast) - 65535 (very slow)

CLS
clears the screen and homes the cursor

COEE
stores hex codes as a subroutine

CODE code code code.......

DATA

stores values to be assigned to variables and string variables by a READ stateman!
DATA 100, FRED, e*24.....

DEFPROC
marks the beginning of a procedure

DEFPROC name
define procedure....oss.
ENDPROC

DIM
dimensions arrays

DIM array name (highest subscript)
DIM array, array, array.seesees-

84

i1

ARARRARN
“HeEEYY

HH

[oads two adjacont locations with valu

DPIKE address, valuw
they LSE w loaded into the addy ind the MBS into the address+ |
ENLD
ends a program
ENDPFROC
marks end ol procedur:

DEFPROA

procedure dofined

ENDPROC
ERROR
genarates specilied arror code

ERROR code number
EXT
allows lor extensions (o Basic

FORTO srep NEXT
els up a FOR, , NEXT loop

FOR varjable name=initial value TO final value
operation

NEXT variable name
the counting rate can be set using STEP

COsUB

gends computer to subroutine beginning at specified line
GOSUB Line number

the number can be represented by a variable or an expression

GOSUB LABEL
sends computer to subroutine beginning at line marked by label

GOSUB LABEL name......
LABEL name

GOTO
sends computer to line specified

GOTO Lline number
number can be represented by a variable or an expression

GOTO LABEL
sends computer to line marked by label

GOTO LABEL name...
LABEL name

85



IF THEN
allows decision making

IF condition THEN operation
the operation is carried out only if the condition 1s true
used with relational and logical cperators

IF THEN ELSE
allows decision to be made between two possibilities

IF condition THEN first operation
ELSE second operation

the operations must be single commands

INPUT
allows response to be typed in

INPUT "some text" ; variable name or string variable name
INPUT provides a 7 prompt

LET
assigns value to variable

LET variable name=value
LET variable name=value,variable name = value, ....

the value may be represented by a number, a variable or an expression

ouT
sends value to the specified Z80 port
itisan ouT(c) ,A sending argument to BC

0UT port, value

PAUSE

PAUSE number
10000=1 second approx

POKE
inserts value into specified location

POKE address, value

PRINT

displays material on the screen
PRINT A
PRINT "..some text.."

delimiters are , —tab and ; — no space

PRINT@

PRINTA column number, row number; material

PRINT TAB

PRINT TAB column; material
column co-ordinate 0-39

86

PROC
n: sends computer to procedure named
Can pass parameters
u: PROC name
PROC name (variable name, variable name)
dn RANDOM
.ll::::ll l-“u"'1h!|hl'th-hdl\Jnnlﬂlvl\I«IH‘LiHJhIlHIhIh»H RND
READ
.I::::’l reads values from para statemen!
READ A,B,C8.......

KEM

allows REMarks to be inserted into program
REN rOMBPRe s wwvsoisn

REPEAT UN'TII

fsels up o loop, repeating an operation until some specified condition is fulfilled
REPEAT

operation
UNTIL condition

the: condition 1s lested at the end of

10 S the loop, so the operation is always performed at
aaal once

RESERVE
moves the stack to allow more room for storing machine code
RESERVE address

RESTORE

restores data pointer either to beginning first line of data or to specified line
RESTORE (ine number

the line number can be represented by a variable or an expression

RETURN

marks the end of subroutine, and returns the co ‘
L mputer to the
containing the osus ’ R

ROUND ON/OFF

rounds the result of calculation to 6 di I I
e digits before displaying-otherwise 8 digits
ROUND is normally ON

==

sels speed of program execution

STOP
mnterrupts program as it runs and returns the computer to immediate mode

87



SWAP
swaps the values of two numeric variables

SWAP variable, variable

TRACE ON/OFF
displays line number of line about to be executed
TRACE is normally OFF

TRAIL ON/OFF
adds trailing zeros to a number to bring it up to an accuracy of 8 digits—or 61l

ROUND ison
TRAIL 1snormally OFF

WHILE WEND
sets up loop to perform an operation whilst a specified condition is true

WHILE condition
operation
WEND

the condition is tested before the operation is carried out

SYSTEM COMMANDS

AUTO
automatic line numbering

AUTO first line number, increment

defaults to 100,10
turn off by pressing [RETURN]

CONT
restarts program after [£5C]

DEL
deletes part of program
DEL Line number
DEL first line,last Line (inclusive)

DISK
calls up the Disk Operating System: lethal if you have no disk drive

LIST
lists program, line, or part of program

LIST
LIST Line number
LIST first line,last line (inclusive)

MON
calls up machine code monitor

NEW
erases program

88

frannny
'R

HHHH

ARnn
'y

HH

RENUM

rEnumbars program

RENUM firgt (ine number (meremant
clalaults 1o 100, 10

KUN

UG progiain

HUN [i1ne numbe/

rung lrom place specilied

EDITING

Llit the [agl hine entarad by typing CCONTROLIQ [RETURN]

Lelit nn earlier line by typing CCONTROLT € LRETURNI, then entering line number
Maove the cursor 1o the left using the left arrow key

Move the cursor o the nght moving the right arrow key

Move the cursor to the beginning of the program line using the up arrow key.
Move the cursor 1o the end of the program line using the down arrow key.
Insert by typing in normally

Dalete uaing the [pELETED key

o anter line by presgsing (RETURN]

MATHEMATICAL AND LOGICAL OPERATORS
Crouped i order of algebraic hierarchy, highest first.
symbol operation

o exponentiation

unary minus

* multiplication

/ division

DIV integer division
MOD modulo

! addition

subtraction

89



AV A I AWV
nowv

NOT

AND
BNAND

OR

BNOR
BNXOR

FUNCTIONS

ABS (X)
gives absolute value of X

ALPHA

returns the (location of ASCII character 32)-320

ANTILOG (X)
gives antilog of x

ARCCOS (cos X)
gives X in radlans

ARCSIN (sin X)
gives X in radians

ARCTAN (tan X)
gives X in radians

BIN (X)

tells the computer to treat x (which must be a series of Os and 1s) as a binary numben

BLACK

returns the code number of colour black

BLUE

returns the code number of colour blue

COS (X)
gives cosine of x. x must

CYAN

returns the code number of colour cyan

90

greater than

less than

equal to

not equal to

greater than or equal to
less than or equal to

logical NOT

logical AND
16 bit binary AND

logical OR
16 bit binary OR
16 bit binary exclusive OR

be in radians

DR OETEETEIND]

LICa(X)

ciiverta X Cn ractians) 1o ol J T €he

LPLEK |

1V AT Orlemnl TR T i1 e |
LAl

1IVe T30

J.‘H"‘ 1'(X

1IVE fctogial ol X

F ALl

returns a value of O

FRAC (X)

jiven liachional parl ol x
CHE'T'N

jiven the ABCI eode of the key currently pressed; wails until a key 1s pressed
CHLAPHI

raturng the location of character 128
CIREEN
relurns the code number of colour areen

HIMEM

wives the et ree address aller the stack

Il
gives the value stored in the HL register after the last caLL

INI
ralurns value as close to infinity as the Lynx is able to process

INK
returns the code number of the current ink colour

INP (port)

gives the value of the specified Z80 port. It gives an IN 4, (C)
gpecilying s

INT (X)

gives integer part of x

KEYN

gives the ASCIH code of the key currently pressed,; if no key is pressed, gives 0

LN (line number)

gives the address in which the first byte of the specified line following the command
wken 18 stored

91



LETTER (code number) ,
uses ALPHA or GRAPHIC to return the first byte of the character specified
LOG (X)

gives log of X

LN (X)

gives natural log of x

MAGENTA

returns the code number of colour magenta

MEM

displays amount of RAM space left in bytes

PAPER

returns the code number of the current paper colour

PEEK (xxxx)

gives the contents of address xxxx

PI

gives value of mm, 3.1415927

POS

returns column number of cursor position 0-126

RAD (X)
converts x (in degrees) to radians

RAND (X)
returns a random integer between 0 and x-1

RED
returns the code number of colour red

RND
generates a random number between 0 and 1

SGN (X)
gives -1 0 or 1, according to the sign of x

SIN (X)
gives the sine of X. X must be in radians

SOR (X)
gives the square root of x

TAN (X)
gives the tangent of X. x must be in radians

TRUE
returns a value of 1

92

VPOS
returns the vertical position of the cursor 0-240

WHITE
returns the code number of colour white

YELLOW
returns the code number of colour yellow

STRINGS
Valid string variable names are A$, BS, ¢$,...upto 1%

LET
assigns value to string varlable

LET string variable name = value
LET AS=... ,BS$=...,(C8$=...

the value can be a string (in inverted commas) a string variable,

DIM
sets maximum length of string up to 127 characters
DIM string name (number)

anything in excess of specified number 1s ignored
defaults to 16 characters

CHR$
converts ASCII code to character

CHR$ (code number)
GET$
returns character string of key pressed
waits for key to be pressed

KEY$
returns character string of key pressed
returns null string if none is pressed

LEFT$
selects left-hand portion of string

LEFT$(string name,number of c¢hrs)
LEN
agives number of characters in string
LEN (string name)
MID$
selects middle portion of string

MID$ (string name,first chr, no of chrs)

Or siring expression

93




R RRRRRRRRERRERRRRRERRRRERRRREEREERRRIPRY+~ww"""/""/""/""""™7"

RIGHT$
selects right-hand portion of string
RIGHT$ (string name, no of chrs)
UPCS
converts letters in string to upper case
UPC$ (string name)

VAL
gives the value of any numbers at the beginning of the string

VAL (string name)

STRING OPERATORS:
You can concatenate strings using +
You can compare strings using = and NOT:

A$=B% NOT A$=B$%

SOUND COMMANDS

BEEP
makes beeping noise

BEEP wavelength, no of cycles, volume
wavelength 0-65535
no of cycles 0-65535
volume 0-63

SOUND
converts values from specified address onwards info noise

SOUND address, delay between outputs

delay 0-65535
end marker 1s a value of 0

GRAPHICS COMMANDS

Screen size is 266 * 247; co-ordinates are specified:

column number, row number
0-255 0-247
94

HHHHHE LT

Colours are specified by number or name

0-BLACK
1-BLUE
2=RED
3=MAGENTA
4=GREEN
5=CYAN
6=YELLOW
7=WHITE

DRAW
moves cursor and draws a line

DRAW co-ordinate, co-ordinate

INK
changes 'foreground’ colour

INK colour number
INK colour name

MOVE
moves cursor without drawing line

MOVE co-ordinate, co-ordinate

PAPER
specilles background’ colour

PAPER colour number
PAPER colour name

PLOT
cambines Move brRAW and poT in five modes

PLOT mode number, co-ordinate, co-ordinate

(=MOVE
I=relative MOVE
2EDRAW
J=relative DRAW
4=D0T

WINDOW
gels screen display area
8 text co-ordinates: 40*240
WINDOW first column,last column+1, first row, last row+1

revert to full screen using
WINDOW 3,123,5,245

CASSETTE COMMANDS

Program names can be any length, within the maximum line length of 240 characters
They must be ininverted commas.

95



APPEND

will append a program on cassette to a program already stored in RAM

APPEND "name"

LOAD

loads a program from cassette into RAM
LOAD "name"

MLOAD

loads machine code programs
MLOAD "name"

SAVE

saves a program onto cassette, with optional automatic start

SAVE "name"
SAVE "name", line number

TAPE
alters baud rate

TAPE number 0 (600 baud)-5 (2100 baud)

VERIFY
checks that program has been saved successfully

VERIFY "name"

PRINTER COMMANDS

LINK ON/CFF
links screen and printer displays
LINK 1s normally off

LLIST
lists to printer

LPRINT
prints to printer

96

1

MONITOR COMMANDS

Enter monitor by typing moN [RETURNI. Exit monitor by typing J [RETURNI,
The monitor has a special prompt *, and error message, 2727

A arithmetic

A XY displays x+Y X-Y 22 — jump relative

B breakpoint

B X sets breakpoint at x

B restores previous value to X

G '|'\l|y
tXx Y1 coplesfromxinto Y for 2 bytes

p dump to cassette

DXYZ"name" dumps from X through to ¥ with a transfer address of z and a specified

name if transfer address is 0, it will not start up automatically

E execule
E X runs code from X,
£ runs from stored program counter.

F fill
fFx ¥ 2 fills memory from x to ¥ inclusive with byte z.

G go
6 X executes code from X, like a subroutine call

H hex dump
H X dumps contents of memecry from X to screen as hex and ASCII
H dumps from the last K, M, L, W etc.

I intelligent copy
1 X Y2 moves block of 2 bytes from X to v intact

J jJump to Basic

L locate

L X ¥ locates occurences of byte v, starting from x through to the end of memory
abort by pressing [ESc]

M modify

allows you to modify the contents of RAM
NXYN Y2 Y3 hxwio aiw s

M X

M

backspace by typing / [RETURNI.

quit by typing . [RETURNI.

97




0 output to port
0 X Y outputs byte ¥ to port X

P increment program counter
p X increments stored program counter by X.

a query port
a X displays input from port X..

R read from cassette
R "name" reads file with specified name from cassette

§ screen clear

T type Into memory
TX text allows you to type ASCII into memory, starting at address X

U update register
U reg X changes the value of the stored register pair specified to x.

v verify
v X ¥ 2 verifies that the block of z bytes starting at x is the-same as that starting at ¥

W word find
W X Y will search for word ¥ from x to the end of memory

x display stored contents of registers

7 displays registers and what they point to

98

[ | W [ B 4 El " 5 "
'YW "




